cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 40 results. Next

A272060 Numbers k such that sigma((k-1)/2) + tau((k-1)/2) is prime.

Original entry on oeis.org

3, 5, 17, 257, 325, 1025, 65537, 82945, 202501, 250001, 2829125, 7496645, 10240001, 13675205, 16000001, 27060805, 48469445, 71402501, 133448705, 150062501, 156250001, 172186885, 182250001, 343064485, 354117125, 453519617, 467943425, 1235663105
Offset: 1

Views

Author

Jaroslav Krizek, Apr 19 2016

Keywords

Comments

Numbers k such that A000203((k-1)/2) + A000005((k-1)/2) is a prime q.
Corresponding values of primes q are in A055813.
Prime terms are in A272061.
The first 5 known Fermat primes from A019434 are in this sequence.

Examples

			sigma((17-1)/2) + tau((17-1)/2) = sigma(8) + tau(8) = 15 + 4 = 19; 19 is prime, so 17 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [n: n in [3..1000000] | IsPrime(NumberOfDivisors((n-1) div 2) + SumOfDivisors((n-1) div 2)) and (n-1) mod 2 eq 0];
    
  • Mathematica
    Select[Range[3, 10^7, 2], PrimeQ[DivisorSigma[1, #] + DivisorSigma[0, #]] &[(# - 1)/2] &] (* Michael De Vlieger, Apr 20 2016 *)
  • PARI
    isok(n) = isprime(sigma((n-1)/2) + numdiv((n-1)/2));
    lista(nn) = forstep (n=3, nn, 2, if (isok(n), print1(n, ", "))); \\ Michel Marcus, Apr 19 2016
    
  • PARI
    is(n)=my(f=factor(n\2)); n>2 && isprime(sigma(f)+numdiv(f)) && isprime(n) \\ Charles R Greathouse IV, Apr 29 2016

Formula

a(n) = 2*A064205(n) + 1.

A272061 Primes p such that sigma((p-1)/2) + tau((p-1)/2) is prime.

Original entry on oeis.org

3, 5, 17, 257, 65537, 453519617, 1372257937, 1927561217, 21320672257, 76001667857, 138388464037, 1216026685697, 2085136000001, 8503056000001, 30118144000001, 35427446793217, 37015056000001, 83037656250001, 87329473560577, 97850397828097, 222330465562501, 233952748524197
Offset: 1

Views

Author

Jaroslav Krizek, Apr 19 2016

Keywords

Comments

Primes p such that A007503((p-1)/2) is a prime q.
Corresponding values of primes q: 2, 5, 19, 263, 65551, 496922891, ...
Prime terms from A272060.
The first 5 known Fermat primes from A019434 are in this sequence.
Primes of the form 2*m+1 with m a term of A064205. - Michel Marcus, Apr 25 2016

Examples

			sigma((17-1)/2) + tau((17-1)/2) = sigma(8) + tau(8) = 15 + 4 = 19; 19 is prime, so 17 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [n: n in [3..1000000] | IsPrime(n) and IsPrime(NumberOfDivisors((n-1) div 2) + SumOfDivisors((n-1) div 2)) and (n-1) mod 2 eq 0];
    
  • Maple
    with(numtheory): A272061:=n->`if`(isprime(n) and isprime(sigma((n-1)/2)+tau((n-1)/2)), n, NULL): seq(A272061(n), n=3..10^5); # Wesley Ivan Hurt, Apr 20 2016
  • Mathematica
    Select[Prime[Range[10000]],PrimeQ[DivisorSigma[1,(#-1)/2] + DivisorSigma[0,(#-1)/2]] & ] (* Robert Price, Apr 21 2016 *)
  • PARI
    isok(n) = isprime(sigma((n-1)/2) + numdiv((n-1)/2));
    lista(nn) = forprime (p=3, nn, if (isok(p), print1(p, ", "))); \\ Michel Marcus, Apr 19 2016
    
  • PARI
    is(n)=my(f=factor(n\2)); isprime(sigma(f)+numdiv(f)) && isprime(n) \\ Charles R Greathouse IV, Apr 28 2016

Extensions

a(7)-a(8) from Michel Marcus, Apr 24 2016
a(9) from Charles R Greathouse IV, Apr 29 2016
a(10) from Charles R Greathouse IV, Apr 29 2016
a(11)-a(20), using A064205 bfile, added by Michel Marcus, Nov 23 2022
a(21)-a(22) from Amiram Eldar, Dec 06 2022

A348219 a(n) = tau(n) - omega(n) + n * Sum_{p|n, p prime} 1/p.

Original entry on oeis.org

1, 2, 2, 4, 2, 7, 2, 7, 5, 9, 2, 14, 2, 11, 10, 12, 2, 19, 2, 18, 12, 15, 2, 26, 7, 17, 12, 22, 2, 36, 2, 21, 16, 21, 14, 37, 2, 23, 18, 34, 2, 46, 2, 30, 28, 27, 2, 48, 9, 39, 22, 34, 2, 51, 18, 42, 24, 33, 2, 71, 2, 35, 34, 38, 20, 66, 2, 42, 28, 64, 2, 70, 2, 41, 44, 46
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 07 2021

Keywords

Comments

For each divisor d of n, add n/d if d is prime, otherwise add 1. For example, a(9) = 5 can be found using its divisors 1,3,9 to get 1 + 9/3 + 1 = 5.
If p is prime, then a(p) = 2 since we have a(p) = tau(p) - omega(p) + p/p = 2 - 1 + 1 = 2.

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} (n/d)^c(d), where c is the prime characteristic (A010051).
a(n) = A000005(n) - A001221(n) + A069359(n).
a(prime(n)) = 2.
From Wesley Ivan Hurt, Jul 21 2025: (Start)
a(n) = Sum_{d|n} (c(d) + phi(d)*omega(n/d)), where c = A005171.
a(n) = A007503(n) - A386438(n). (End)

A366983 a(n) = Sum_{k=1..n} (k+1) * floor(n/k).

Original entry on oeis.org

2, 7, 13, 23, 31, 47, 57, 76, 92, 114, 128, 162, 178, 206, 234, 270, 290, 335, 357, 405, 441, 481, 507, 575, 609, 655, 699, 761, 793, 873, 907, 976, 1028, 1086, 1138, 1238, 1278, 1342, 1402, 1500, 1544, 1648, 1694, 1784, 1868, 1944, 1994, 2128, 2188, 2287, 2363, 2467
Offset: 1

Views

Author

Seiichi Manyama, Oct 30 2023

Keywords

Crossrefs

Partial sums of A007503.

Programs

  • PARI
    a(n) = sum(k=1, n, (k+1)*(n\k));
    
  • Python
    from math import isqrt
    def A366983(n): return -(s:=isqrt(n))*(s*(s+4)+5)+sum(((q:=n//w)+1)*(q+(w<<1)+4) for w in range(1,s+1))>>1 # Chai Wah Wu, Oct 31 2023

Formula

a(n) = A006218(n) + A024916(n).
G.f.: 1/(1-x) * Sum_{k>0} (1/(1-x^k)^2 - 1) = 1/(1-x) * Sum_{k>0} (k+1) * x^k/(1-x^k).
a(n) = A257644(n) - 1. - Hugo Pfoertner, Oct 31 2023

A385000 Square array read by upward antidiagonals: A(n,k) = 0 except for A(d*(m-1),m*(d-1)) = d, with n >= 0, k >= 0, d >= 1, m >= 1.

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 0, 0, 4, 1, 0, 2, 0, 5, 1, 0, 0, 0, 0, 6, 1, 0, 0, 0, 0, 0, 7, 1, 0, 0, 2, 3, 0, 0, 8, 1, 0, 0, 0, 0, 0, 0, 0, 9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 10, 1, 0, 0, 0, 2, 0, 4, 0, 0, 0, 11, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 13, 1, 0, 0, 0, 0, 2, 0, 0, 5, 0, 0, 0, 0, 14
Offset: 0

Views

Author

Omar E. Pol, Jun 16 2025

Keywords

Comments

Given a number d whose position is (n,k) so the next number d is in the position (n+d,k+d-1). In other words: we can find the next number d by walking d steps south and then walking d-1 steps east. Hence the Manhattan distance between two nearest numbers d is 2*d - 1.
By definition the m-th number d is in the position (d*(m-1),m*(d-1)) thus all the numbers d are on the same straight line.
The positive terms in the row n >= 1 are the divisors of n in increasing order. Hence the number of positive terms in row n is A000005(n).
The positive terms in the column k >= 1 are 1 plus the divisors of k in decreasing order. Hence the number of positive terms in the column k is A000005(k).
In the row n >= 1, two conjugate divisors of n are equidistant from the position (n,n-1). That position is in the same column that contains to the number n in the row 0.
In the column k >= 1, two conjugate (1 plus divisor)'s of k are equidistant from the position (k,k+1).
On the other hand we can find the divisors of n on a curve which starts at A(n-1,0) = 1 and ends at A(0,n-1) = n. Hence the number of positive terms in the curve (n-1) is A000005(n). Here that curve is called "curve of divisors of n".
Note that every divisor of n less to n on the curve is also a divisor of a number less to n in a row. Hence every divisor of n in a row is also a divisor on the curve of divisors of a number greater than n.
The position of two conjugate divisors of n on the curve is orthogonal and equidistant to the main diagonal of the array.
Curves never touch each other. See the curve and the row both with the divisors of 12 in the Example section.
Drawing all the curves the 2D structure is compatible with a 3D model where in orthogonal position is the arc diagram of A000005. See Links section.
The main diagonal is an irregular triangle read by rows in which row r lists r together with 2*r - 1 zeros, r >= 1.

Examples

			The corner 9 X 9 of the square array is as shown below:
.
   \k   0 1 2 3 4 5 6 7 8
   n\ _ _ _ _ _ _ _ _ _ _
     |
   0 |  1 2 3 4 5 6 7 8 9
   1 |  1 0 0 0 0 0 0 0 0
   2 |  1 0 2 0 0 0 0 0 0
   3 |  1 0 0 0 3 0 0 0 0
   4 |  1 0 0 2 0 0 4 0 0
   5 |  1 0 0 0 0 0 0 0 5
   6 |  1 0 0 0 2 0 3 0 0
   7 |  1 0 0 0 0 0 0 0 0
   8 |  1 0 0 0 0 2 0 0 0
  ...
.
The corner 25 X 25 of the square array without the zeros is as shown below:
.
                            1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
   \k   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
   n\ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
   0 |  1 2 3 4 5 6 7 8 9 ...
   1 |  1
   2 |  1   2
   3 |  1       3
   4 |  1     2     4
   5 |  1               5
   6 |  1       2   3       6
   7 |  1                       7
   8 |  1         2       4         8
   9 |  1               3               9
  10 |  1           2           5           10
  11 |  1                                       11
  12 |  1             2     3   4     6             12
  13 |  1                                               13
  14 |  1               2                   7
  15 |  1                       3       5
  16 |  1                 2           4           8
  17 |  1
  18 |  1                   2       3           6       9
  19 |  1
  20 |  1                     2             4   5
  21 |  1                               3               7
  22 |  1                       2
  23 |  1
  24 |  1                         2         3     4
  ...
.
The corner 25 X 25 of the square array without the zeros with the row and the curve of the divisors of 12 is as shown below:
.
                            1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
   \k   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
   n\ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
     |
   0 |                        12
   1 |
   2 |
   3 |
   4 |
   5 |
   6 |                      6
   7 |
   8 |                    4
   9 |                  3
  10 |              2
  11 |  1
  12 |  1             2     3   4     6             12
  ...
.
The position of the conjugate divisors of 12 on the curve is symmetric respect to the main diagonal of the square array.
The position of the conjugate divisors of 12 in row 12 is symmetric respect the position (12,11). That position is in the same column that contains to the number 12 in the row 0.
		

Crossrefs

Row sums give A000203, n >= 1.
Column sums give A007503 = A000203 + A000005, k >= 1.
Row 0 gives A000027.
Column 0 gives A000012.

A087801 Greatest common divisor of tau(n)+sigma(n) and tau(n)*sigma(n), where tau = A000005 and sigma = A000203.

Original entry on oeis.org

1, 1, 2, 1, 4, 16, 2, 1, 1, 2, 2, 2, 4, 4, 4, 1, 4, 9, 2, 12, 4, 8, 2, 4, 1, 2, 4, 2, 4, 16, 2, 3, 4, 2, 4, 1, 4, 16, 4, 2, 4, 8, 2, 18, 12, 4, 2, 2, 3, 9, 4, 4, 4, 64, 4, 64, 4, 2, 2, 36, 4, 4, 2, 1, 8, 8, 2, 12, 4, 8, 2, 9, 4, 2, 2, 2, 4, 16, 2, 4, 1, 2, 2, 4, 16, 8, 4, 4, 4, 6, 4, 6, 4, 4, 4, 24
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 11 2003

Keywords

Comments

a(n) = GCD(A007503(n), A064840(n)).

Crossrefs

Programs

  • Mathematica
    GCD[Total[#],Times@@#]&/@Table[{DivisorSigma[0,n],DivisorSigma[1,n]},{n,100}] (* Harvey P. Dale, Jul 17 2018 *)
  • PARI
    A087801(n) = gcd(sigma(n)+numdiv(n), sigma(n)*numdiv(n)); \\ Antti Karttunen, May 22 2017

A163163 a(n) = sigma(n) + tau(n) - n.

Original entry on oeis.org

1, 3, 3, 6, 3, 10, 3, 11, 7, 12, 3, 22, 3, 14, 13, 20, 3, 27, 3, 28, 15, 18, 3, 44, 9, 20, 17, 34, 3, 50, 3, 37, 19, 24, 17, 64, 3, 26, 21, 58, 3, 62, 3, 46, 39, 30, 3, 86, 11, 49, 25, 52, 3, 74, 21, 72, 27, 36, 3, 120, 3, 38, 47, 70, 23, 86, 3, 64, 31, 82, 3, 135, 3, 44, 55, 70, 23, 98, 3
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 22 2009

Keywords

Examples

			a(10) = A007503(10) - 10 = 22 - 10 = 12.
		

Crossrefs

Programs

Formula

a(n) = A007503(n) - n = A000203(n) + A000005(n) - n.
a(n) = A000005(n) + A001065(n). - Antti Karttunen, Feb 25 2018

Extensions

47 replaced with 37 by R. J. Mathar, Jul 25 2009

A320457 Lesser members of dihedral amicable pairs: numbers (m, k) such that t(m) = t(k) = m + k, where t(k) = sigma(k) + d(k).

Original entry on oeis.org

144, 300, 10434, 15774, 17034, 21032, 22088, 35394, 36872, 65324, 67628, 153868, 188468, 254526, 379026, 483812, 492414, 905212, 1090528, 1198180, 1514212, 1634262, 1886046, 1898420, 2013414, 2184860, 2191588, 2316546, 2596448, 2816156, 3340024, 3854886
Offset: 1

Views

Author

Amiram Eldar, Dec 01 2018

Keywords

Comments

Jensen and Bussian suggested the calculation of this sequence as a part of a student research project.

Examples

			144 is in the sequence since (144, 274) is a pair of dihedral amicable numbers: sigma(144) + d(144) = 403 + 15 = 418, sigma(274) + d(274) = 414 + 4 = 418, and 144 + 274 = 418.
		

Crossrefs

Cf. A000005 (d), A000203 (sigma), A007503, A083874, A322254 (greater members).

Programs

  • Mathematica
    t[n_] := DivisorSigma[0,n] + DivisorSigma[1,n] - n; s={}; Do[n = t[m]; If[n>m && t[n]==m, AppendTo[s,m]], {m, 1, 100000}];s
  • PARI
    f(n) = numdiv(n) + sigma(n) - n;
    isok(n) = my(nn = f(n)); (nn > n) && (n == f(nn)); \\ Michel Marcus, Dec 04 2018

A322254 Greater members of dihedral amicable pairs: numbers (m, k) such that t(m) = t(k) = m + k, where t(k) = sigma(k) + d(k).

Original entry on oeis.org

274, 586, 11470, 18802, 19270, 22184, 23288, 39790, 38744, 65392, 68476, 163676, 198628, 263890, 463390, 512116, 596258, 1070492, 1100384, 1342004, 1590452, 2139722, 2122946, 2262628, 2389562, 2562844, 2344436, 2831470, 2642656, 2949628, 3464008, 5476346
Offset: 1

Views

Author

Amiram Eldar, Dec 01 2018

Keywords

Comments

Jensen and Bussian suggested the calculation of this sequence as a part of a student research project.
The terms are ordered according to their lesser counterparts (A320457). - Amiram Eldar, Jul 03 2025

Examples

			274 is in the sequence since (144, 274) is a pair of dihedral amicable numbers: sigma(144) + d(144) = 403 + 15 = 418, sigma(274) + d(274) = 414 + 4 = 418, and 144 + 274 = 418.
		

Crossrefs

Cf. A000005 (d), A000203 (sigma), A007503, A083874, A320457 (lesser members).

Programs

  • Mathematica
    t[n_] := DivisorSigma[0,n] + DivisorSigma[1,n]-n; s={}; Do[n=t[m]; If[n>m && t[n]==m, AppendTo[s,n]], {m,1,100000}]; s
  • PARI
    f(n) = numdiv(n) + sigma(n) - n;
    isok(n) = my(nn = f(n)); (nn < n) && (n == f(nn)); \\ Michel Marcus, Dec 04 2018

A363660 a(n) = Sum_{d|n} binomial(d+n,n).

Original entry on oeis.org

2, 9, 24, 90, 258, 1043, 3440, 13419, 48850, 187836, 705444, 2725099, 10400614, 40233015, 155133856, 601820876, 2333606238, 9079958260, 35345263820, 137876637843, 538259060526, 2104292500739, 8233430727624, 32248866496625, 126410606580284
Offset: 1

Views

Author

Seiichi Manyama, Jun 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + n, n] &]; Array[a, 25] (* Amiram Eldar, Jul 17 2023 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d+n, n));

Formula

a(n) = [x^n] Sum_{k>0} (1/(1 - x^k)^(n+1) - 1).
a(n) = [x^n] Sum_{k>0} binomial(k+n,n) * x^k/(1 - x^k).
Previous Showing 21-30 of 40 results. Next