cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 73 results. Next

A290131 Number of regions in a regular drawing of the complete bipartite graph K_{n,n}.

Original entry on oeis.org

0, 2, 12, 40, 96, 204, 368, 634, 1012, 1544, 2236, 3186, 4360, 5898, 7764, 10022, 12712, 16026, 19844, 24448, 29708, 35756, 42604, 50602, 59496, 69650, 80940, 93600, 107540, 123316, 140428, 159642, 180632, 203618, 228556, 255822, 285080, 317326, 352020, 389498
Offset: 1

Views

Author

R. J. Mathar, Jul 20 2017

Keywords

Crossrefs

For K_n see A007569, A007678, A135563.
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020

Programs

  • Maple
    A290131 := proc(n)
        A115004(n-1)+(n-1)^2 ;
    end proc:
    seq(A290131(n),n=1..30) ;
  • Mathematica
    z[n_] := Sum[(n - i + 1)(n - j + 1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];
    a[n_] := z[n - 1] + (n - 1)^2;
    Array[a, 40] (* Jean-François Alcover, Mar 24 2020 *)
  • Python
    from math import gcd
    def a115004(n):
        r=0
        for a in range(1, n + 1):
            for b in range(1, n + 1):
                if gcd(a, b)==1:r+=(n + 1 - a)*(n + 1 - b)
        return r
    def a(n): return a115004(n - 1) + (n - 1)**2
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 20 2017, after Maple code
    
  • Python
    from sympy import totient
    def A290131(n): return 2*(n-1)**2 + sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n)) # Chai Wah Wu, Aug 16 2021

Formula

a(n) = A115004(n-1) + (n-1)^2.
a(n) = 2*(n-1)^2 + Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 16 2021

A331755 Number of vertices in a regular drawing of the complete bipartite graph K_{n,n}.

Original entry on oeis.org

2, 5, 13, 35, 75, 159, 275, 477, 755, 1163, 1659, 2373, 3243, 4429, 5799, 7489, 9467, 11981, 14791, 18275, 22215, 26815, 31847, 37861, 44499, 52213, 60543, 70011, 80347, 92263, 105003, 119557, 135327, 152773, 171275, 191721, 213547, 237953
Offset: 1

Views

Author

N. J. A. Sloane, Feb 02 2020

Keywords

Crossrefs

Cf. A290131 (regions), A290132 (edges), A333274 (polygons per vertex), A333276, A159065.
For K_n see A007569, A007678, A135563.

Programs

  • Maple
    # Maple code from N. J. A. Sloane, Jul 16 2020
    V106i := proc(n) local ans,a,b; ans:=0;
    for a from 1 to n-1 do for b from 1 to n-1 do
    if igcd(a,b)=1 then ans:=ans + (n-a)*(n-b); fi; od: od: ans; end; # A115004
    V106ii := proc(n) local ans,a,b; ans:=0;
    for a from 1 to floor(n/2) do for b from 1 to floor(n/2) do
    if igcd(a,b)=1 then ans:=ans + (n-2*a)*(n-2*b); fi; od: od: ans; end; # A331761
    A331755 := n -> 2*(n+1) + V106i(n+1) - V106ii(n+1);
  • Mathematica
    a[n_]:=Module[{x,y,s1=0,s2=0}, For[x=1, x<=n-1, x++, For[y=1, y<=n-1, y++, If[GCD[x,y]==1,s1+=(n-x)*(n-y); If[2*x<=n-1&&2*y<=n-1,s2+=(n-2*x)*(n-2*y)]]]]; s1-s2]; Table[a[n]+ 2 n, {n, 1, 40}] (* Vincenzo Librandi, Feb 04 2020 *)

Formula

a(n) = A290132(n) - A290131(n) + 1.
a(n) = A159065(n) + 2*n.
This is column 1 of A331453.
a(n) = (9/(8*Pi^2))*n^4 + O(n^3 log(n)). Asymptotic to (9/(2*Pi^2))*A000537(n-1). [Stéphane Legendre, see A159065.]

A062361 Number of triangular regions in regular n-gon with all diagonals drawn.

Original entry on oeis.org

1, 4, 10, 18, 35, 56, 90, 120, 176, 276, 377, 476, 585, 848, 1054, 1404, 1653, 2200, 2268, 2992, 3749, 4416, 5000, 6292, 6777, 8316, 9222, 11670, 11501, 14368, 15840, 18598, 19705, 24444, 25012, 28842, 30966, 36000, 39278, 45318, 46999, 53900
Offset: 3

Views

Author

Sascha Kurz, Jul 07 2001

Keywords

Comments

Also the number of 3-cycles and maximum cliques in the n-polygon diagonal intersection graph. - Eric W. Weisstein, Mar 08-09 2018

Examples

			a(4) = 4 because in a quadrilateral the diagonals cross to make four triangles.
		

Crossrefs

Cf. A300552 (4-cycles), A300553 (5-cycles), A300554 (6-cycles).

Formula

a(n) = n * A067162(n).

A006533 Place n equally-spaced points around a circle and join every pair of points by a chord; this divides the circle into a(n) regions.

Original entry on oeis.org

1, 2, 4, 8, 16, 30, 57, 88, 163, 230, 386, 456, 794, 966, 1471, 1712, 2517, 2484, 4048, 4520, 6196, 6842, 9109, 9048, 12951, 14014, 17902, 19208, 24158, 21510, 31931, 33888, 41449, 43826, 52956, 52992, 66712, 70034, 82993, 86840, 102091, 97776, 124314, 129448, 149986, 155894, 179447, 179280
Offset: 1

Views

Author

N. J. A. Sloane, Bjorn Poonen (poonen(AT)math.princeton.edu)

Keywords

Comments

This sequence and A007678 are two equivalent ways of presenting the same sequence. - N. J. A. Sloane, Jan 23 2020
In contrast to A007678, which only counts the polygons, this sequence also counts the n segments of the circle bounded by the arc of the circle and the straight line, both joining two neighboring points on the circle. Therefore a(n) = A007678(n) + n. - M. F. Hasler, Dec 12 2021

References

  • Jean Meeus, Wiskunde Post (Belgium), Vol. 10, 1972, pp. 62-63.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.

Programs

  • Mathematica
    del[m_,n_]:=If[Mod[n,m]==0,1,0];
    R[n_]:=(n^4-6n^3+23n^2-18n+24)/24 + del[2,n](-5n^3+42n^2-40n-48)/48 - del[4,n](3n/4) + del[6,n](-53n^2+310n)/12 + del[12,n](49n/2) + del[18,n]*32n + del[24,n]*19n - del[30,n]*36n - del[42,n]*50n - del[60,n]*190n - del[84,n]*78n - del[90,n]*48n - del[120,n]*78n - del[210,n]*48n;
    Table[R[n], {n,1,1000}] (* T. D. Noe, Dec 21 2006 *)
  • PARI
    apply( {A006533(n)=if(n%2, (((n-6)*n+23)*n-18)*n/24+1, ((n^3/2 -17*n^2/4 +22*n -if(n%4, 19, 28) +!(n%6)*(310 -53*n))/12 +!(n%12)*49/2 +!(n%18)*32 +!(n%24)*19 -!(n%30)*36 -!(n%42)*50 -!(n%60)*190 -!(n%84)*78 -!(n%90)*48 -!(n%120)*78 -!(n%210)*48)*n)}, [1..44]) \\ M. F. Hasler, Aug 06 2021
  • Python
    def d(n,m): return not n % m
    def A006533(n): return (1176*d(n,12)*n - 3744*d(n,120)*n + 1536*d(n,18)*n - d(n,2)*(5*n**3 - 42*n**2 + 40*n + 48) - 2304*d(n,210)*n + 912*d(n,24)*n - 1728*d(n,30)*n - 36*d(n,4)*n - 2400*d(n,42)*n - 4*d(n,6)*n*(53*n - 310) - 9120*d(n,60)*n - 3744*d(n,84)*n - 2304*d(n,90)*n + 2*n**4 - 12*n**3 + 46*n**2 - 36*n)//48 + 1 # Chai Wah Wu, Mar 08 2021
    

Formula

Poonen and Rubinstein give an explicit formula for a(n) (see Mma code).
a(n) = A007678(n) + n. - T. D. Noe, Dec 23 2006

Extensions

Added more terms from b-file. - N. J. A. Sloane, Jan 23 2020
Edited definition. - N. J. A. Sloane, Mar 17 2024

A103314 Total number of subsets of the n-th roots of 1 that add to zero.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 10, 2, 16, 8, 34, 2, 100, 2, 130, 38, 256, 2, 1000, 2, 1156, 134, 2050, 2, 10000, 32, 8194, 512, 16900, 2, 146854, 2, 65536, 2054, 131074, 158, 1000000, 2, 524290, 8198, 1336336, 2, 11680390, 2, 4202500, 54872, 8388610, 2, 100000000, 128
Offset: 0

Views

Author

Wouter Meeussen, Mar 11 2005

Keywords

Comments

The term a(0) = 1 counts the single zero-sum subset of the (by convention) empty set of zeroth roots of 1.
I am inclined to believe that if S is a zero-sum subset of the n-th roots of 1, that n can be built up from (zero-sum) cyclically balanced subsets via the following operations: 1. A U B, where A and B are disjoint. 2. A - B, where B is a subset of A. - David W. Wilson, May 19 2005
Lam and Leung's paper, though interesting, does not apply directly to this sequence because it allows repetitions of the roots in the sums.
Observe that 2^n=a(n) (mod n). Sequence A107847 is the quotient (2^n-a(n))/n. - T. D. Noe, May 25 2005
From Max Alekseyev, Jan 31 2008: (Start)
Every subset of the set U(n) = { 1=r^0, r^1, ..., r^(n-1) } of the n-th power roots of 1 (where r is a fixed primitive root) defines a binary word w of the length n where the j-th bit is 1 iff the root r^j is included in the subset.
If d is the period of w with respect to cyclic rotations (thus d|n) then the periodic part of w uniquely defines some binary Lyndon word of the length d (see A001037). In turn, each binary Lyndon word of the length d, where d
The binary Lyndon words of the length n are different in this respect: only some of them correspond to n distinct zero-sum subsets of U(n) while the others do not correspond to such subsets at all. A110981(n) gives the number of binary Lyndon words of the length n that correspond to zero-sum subsets of U(n). (End)

Crossrefs

Equals A070894 + 1. A107847(n) = (2^n - A103314(n))/n, A110981 = A001037 - A107847.
Row sums of A103306. See also A006533, A006561, A006600, A007569, A007678.
Cf. A070925, A107753 (number of primitive subsets of the n-th roots of unity summing to zero), A107754 (number of subsets of the n-th roots of unity summing to one), A107861 (number of distinct values in the sums of all subsets of the n-th roots of unity).
Cf. A322366.

Programs

  • Mathematica
    Needs["DiscreteMath`Combinatorica`"]; Table[Plus@@Table[Count[ (KSubsets[ Range[n], k]), q_List/;Chop[ Abs[Plus@@(E^(2.*Pi*I*q/n))]]==0], {k, 0, n}], {n, 15}] (* T. D. Noe *)
  • PARI
    /* This program implements all known results; it works for all n except for 165, 195, 210, 231, 255, 273, 285, 330, 345, ... */
    A103314(n) = { local(f=factor(n)); n<2 & return(1); n==f[1,1] & return(2);
    vecmax(f[,2])>1 & return(A103314(f=prod(i=1,#f~,f[i,1]))^(n/f));
    if( 2==#f=f[,1], return(2^f[1]+2^f[2]-2));
    #f==3 & f[1]==2 & return(sum(j=0,f[2],binomial(f[2],j)*(2^j+2^(f[2]-j))^f[3])
    +(2^f[2]+2)^f[3]+(2^f[3]+2)^f[2]-2*((2^f[2]+1)^f[3]+(2^f[3]+1)^f[2])+2^(f[2]*f[3]));
    n==105 & return(166093023482); error("A103314(n) is unknown for n=",n) }
    /* Max Alekseyev and M. F. Hasler, Jan 31 2008 */

Formula

a(n) = A070894(n)+1.
a(2^n) = 2^(2^(n-1)). - Dan Asimov and Gareth McCaughan, Mar 11 2005
a(2n) = a(n)^2 if n is even. If p, q are primes, a(pq) = 2^p+2^q-2. In particular, if p is prime, a(2p) = 2^p + 2. - Gareth McCaughan, Mar 12 2005
a(n) == 2^n (mod n), a(p) = 2 (p prime). - David W. Wilson, May 08 2005
It appears that a(n) = a(s(n))^(n/s(n)) where s(n) = A007947(n) is the squarefree kernel of n. This is true if all zero-sum subsets of the n-th roots of 1 are formed by set operations on cyclic subsets. If true, A103314 is determined by its values on squarefree numbers (A005117). Some consequences would be a(p^n) = 2^p^(n-1), a(p^m q^n) = (2^p+2^q+2)^(p^(m-1) q^(n-1)) and a(p^2 n) = a(pn)^p for primes p and q. - David W. Wilson, May 08 2005
a(pn) = a(n)^p when p is prime and p|n; a(2p) = 2^p+2 when p is an odd prime. More generally a(pq) = 2^p+2^q-2 when p, q are distinct primes. - Gareth McCaughan, Mar 12 2005
For distinct odd primes p and q, a(2pq) = (2^p+2)^q + (2^q+2)^p - 2(2^p+1)^q - 2(2^q+1)^p + 2^(pq) + SUM[j=0..p] binomial(p,j)(2^j+2^(p-j))^q. - Sasha Rybak, Sep 21 2007.
a(n) = n*A110981(n) + 2^n - n*A001037(n). - Max Alekseyev, Jan 14 2008

Extensions

More terms from David W. Wilson, Mar 12 2005
Scott Huddleston (scotth(AT)ichips.intel.com) finds that a(30) >= 146854 and conjectures that is the true value of a(30). - Mar 24 2005. Confirmed by Meeussen and Wilson.
More terms from T. D. Noe, May 25 2005
Further terms from Max Alekseyev and M. F. Hasler, Jan 07 2008
Edited by M. F. Hasler, Feb 06 2008
Duplicate Mathematica program deleted by Harvey P. Dale, Jun 28 2021

A006600 Total number of triangles visible in regular n-gon with all diagonals drawn.

Original entry on oeis.org

1, 8, 35, 110, 287, 632, 1302, 2400, 4257, 6956, 11297, 17234, 25935, 37424, 53516, 73404, 101745, 136200, 181279, 236258, 306383, 389264, 495650, 620048, 772785, 951384, 1167453, 1410350, 1716191, 2058848, 2463384, 2924000, 3462305, 4067028, 4776219, 5568786, 6479551
Offset: 3

Keywords

Comments

Place n equally-spaced points on a circle, join them in all possible ways; how many triangles can be seen?

Examples

			a(4) = 8 because in a quadrilateral the diagonals cross to make four triangles, which pair up to make four more.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Often confused with A005732.
Row sums of A363174.
Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.

Programs

  • Mathematica
    del[m_,n_]:=If[Mod[n,m]==0,1,0]; Tri[n_]:=n(n-1)(n-2)(n^3+18n^2-43n+60)/720 - del[2,n](n-2)(n-7)n/8 - del[4,n](3n/4) - del[6,n](18n-106)n/3 + del[12,n]*33n + del[18,n]*36n + del[24,n]*24n - del[30,n]*96n - del[42,n]*72n - del[60,n]*264n - del[84,n]*96n - del[90,n]*48n - del[120,n]*96n - del[210,n]*48n; Table[Tri[n], {n,3,1000}] (* T. D. Noe, Dec 21 2006 *)

Formula

a(2n-1) = A005732(2n-1) for n > 1; a(2n) = A005732(2n) - A260417(n) for n > 1. - Jonathan Sondow, Jul 25 2015

Extensions

a(3)-a(8) computed by Victor Meally (personal communication to N. J. A. Sloane, circa 1975); later terms and recurrence from S. Sommars and T. Sommars.

A067151 Number of regions in regular n-gon which are quadrilaterals (4-gons) when all its diagonals are drawn.

Original entry on oeis.org

0, 0, 6, 7, 24, 36, 90, 132, 168, 234, 378, 600, 672, 901, 954, 1444, 1580, 2520, 2860, 2990, 3696, 4800, 5070, 6750, 7644, 9309, 7920, 12927, 12896, 15576, 16898, 20475, 18684, 25382, 27246, 30966, 32760, 37064, 37170, 45838, 47300, 55350, 60996, 69231, 66864, 80507, 87550, 98124, 103272
Offset: 4

Author

Sascha Kurz, Jan 06 2002

Keywords

Examples

			a(6)=6 because the 6 regions around the center are quadrilaterals.
		

References

  • B. Poonen and M. Rubinstein, Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics, Vol. 11, pp. 135-156.

Formula

Conjecture: a(n) ~ c * n^4. Is c = 1/64 ? - Bill McEachen, Mar 03 2024

Extensions

Title clarified, a(47) and above by Scott R. Shannon, Dec 04 2021

A146212 Number of intersection points of all lines through pairs of vertices of a regular n-gon.

Original entry on oeis.org

3, 5, 15, 37, 91, 145, 333, 471, 891, 901, 1963, 2185, 3795, 3969, 6681, 5563, 10963, 11141, 17031, 17293, 25323, 21913, 36325, 36479, 50571, 50485, 68643, 51661, 91171, 90753, 118833, 118355, 152355, 139861, 192511, 191445, 240123, 238481
Offset: 3

Author

T. D. Noe, Oct 28 2008

Keywords

Comments

This includes intersection points outside of the n-gon. Note that for odd n, n divides a(n); for even n, n divides a(n)-1. For odd n, it appears that a(n)=n*(n^3-7*n^2+15*n-1)/8.
That formula for odd n is correct: see the Sidorenko link. - N. J. A. Sloane, Sep 12 2021

Examples

			a(5)=15 because there are 5 points inside the pentagon, 5 points on the pentagon and five points outside of the pentagon.
		

Crossrefs

Bisection: A347319, A347321.

Formula

There is a formula for odd n: see Comment section and the Sidorenko link. - N. J. A. Sloane, Sep 12 2021

Extensions

More terms from Jon E. Schoenfield, Nov 10 2008
Definition clarified by N. J. A. Sloane, Jun 06 2025

A358746 The number of vertices formed when every pair of n points, placed at the vertices of a regular n-gon, are connected by a circle and where the points lie at the ends of the circle's diameter.

Original entry on oeis.org

2, 6, 5, 55, 54, 252, 169, 747, 630, 1804, 1381, 3679, 3150, 6690, 5553, 11509, 9846, 18012, 15241, 27237, 24398, 39606, 33577, 56275, 50622, 77058, 69693, 102979, 94770, 135966, 124065, 175593, 162894, 222810, 205885, 279831, 260870, 347178, 321961, 424391, 399042
Offset: 2

Author

Scott R. Shannon, Nov 30 2022

Keywords

Comments

Conjecture: for odd values of n all vertices are simple, other than those defining the diameters of the circles. No formula for n, or only the odd values of n, is currently known.
The author thanks Zach Shannon some of whose code was used in the generation of this sequence.
If n is odd, the circle containing the initial n points is not part of the graph (compare A370976-A370979). - N. J. A. Sloane, Mar 25 2024

Crossrefs

Cf. A358782 (regions), A358783 (edges), A359009 (k-gons), A007569, A146212.
See allso A370976-A370979.

Formula

a(n) = A358783(n) - A358782(n) + 1 by Euler's formula.

A101363 In the interior of a regular 2n-gon with all diagonals drawn, the number of points where exactly three diagonals intersect.

Original entry on oeis.org

0, 1, 8, 20, 60, 112, 208, 216, 480, 660, 864, 1196, 1568, 2250, 2464, 2992, 3924, 4332, 5160, 8148, 7040, 8096, 10560, 10600, 12064, 15552, 15288, 17052, 25320, 21080, 23360, 30360, 28288, 30940, 36288, 36852, 40128, 50076, 47120, 50840, 67620
Offset: 2

Author

Graeme McRae, Dec 26 2004, revised Feb 23 2008, Feb 26 2008

Keywords

Comments

When n is odd, there are no intersections in the interior of an n-gon where more than 2 diagonals meet.
When n is not a multiple of 6, there are no intersections in the interior of an n-gon where more than 3 diagonals meet.
When n is not a multiple of 30, there are no intersections in the interior of an n-gon where more than 5 diagonals meet.
I checked the following conjecture up to n=210: "An n-gon with n=30k has 5n points where 6 or 7 diagonals meet and no points where more than 7 diagonals meet; If k is odd, then 6 diagonals meet in each of 4n points and 7 diagonals meet in each of n points; If k is even, then no groups of exactly 6 diagonals meet in a point, while exactly 7 diagonals meet in each of 5n points."

Examples

			a(6)=60 because inside a regular 12-gon there are 60 points (4 on each radius and 1 midway between radii) where exactly three diagonals intersect.
		

Crossrefs

A column of A292105.
Cf. A000332: C(n, 4) = number of intersection points of diagonals of convex n-gon.
Cf. A006561: number of intersections of diagonals in the interior of regular n-gon
Cf. A292104: number of 2-way intersections in the interior of a regular n-gon
Cf. A101364: number of 4-way intersections in the interior of a regular n-gon
Cf. A101365: number of 5-way intersections in the interior of a regular n-gon
Cf. A137938: number of 4-way intersections in the interior of a regular 6n-gon
Cf. A137939: number of 5-way intersections in the interior of a regular 6n-gon.
Previous Showing 11-20 of 73 results. Next