cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 106 results. Next

A376590 Second differences of consecutive squarefree numbers (A005117). First differences of A076259.

Original entry on oeis.org

0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 2, -2, 3, -2, 0, 0, -1, 0, 1, -1, 2, -2, 0, 1, -1, 0, 1, -1, 2, -2, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 1, 2, -3, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 2, -2, 2, -2, 3, -2, -1
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2024

Keywords

Examples

			The squarefree numbers (A005117) are:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, ...
with first differences (A076259):
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, ...
with first differences (A376590):
  0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, ...
		

Crossrefs

The version for A000002 is A376604, first differences of A054354.
The first differences were A076259, see also A375927, A376305, A376306, A376307, A376311.
Zeros are A376591, complement A376592.
Sorted positions of first appearances are A376655.
A000040 lists the prime numbers, differences A001223.
A001597 lists perfect-powers, complement A007916.
A005117 lists squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.
A333254 lists run-lengths of differences between consecutive primes.
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376593 (nonsquarefree), A376596 (prime-power inclusive), A376599 (non-prime-power inclusive).
For squarefree numbers: A076259 (first differences), A376591 (inflections and undulations), A376592 (nonzero curvature), A376655 (sorted first positions).

Programs

  • Mathematica
    Differences[Select[Range[100],SquareFreeQ],2]
  • Python
    from math import isqrt
    from sympy import mobius
    def A376590(n):
        def iterfun(f,n=0):
            m, k = n, f(n)
            while m != k: m, k = k, f(k)
            return m
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        a = iterfun(f,n)
        b = iterfun(lambda x:f(x)+1,a)
        return a+iterfun(lambda x:f(x)+2,b)-(b<<1) # Chai Wah Wu, Oct 02 2024

A007675 Numbers m such that m, m+1 and m+2 are squarefree.

Original entry on oeis.org

1, 5, 13, 21, 29, 33, 37, 41, 57, 65, 69, 77, 85, 93, 101, 105, 109, 113, 129, 137, 141, 157, 165, 177, 181, 185, 193, 201, 209, 213, 217, 221, 229, 237, 253, 257, 265, 281, 285, 301, 309, 317, 321, 329, 345, 353, 357, 365, 381, 389, 393, 397, 401, 409, 417, 429, 433, 437, 445, 453
Offset: 1

Views

Author

Keywords

Comments

Four categories: all terms are composites like {33, 34, 35}; first term only is prime like {37, 38, 39}; third term only is prime like {57, 58, 59}; first and third are primes like {29, 30, 31}. - Labos Elemer
Four consecutive integers cannot be squarefree as one of them is divisible by 2^2 = 4. - Amarnath Murthy, Feb 18 2002
Numbers m such that m^3 + 3m^2 + 2m is squarefree. See proof below. - Charles R Greathouse IV, Mar 05 2013
There are kx + O(x/log x) terms of this sequence below x, where k = A206256. - Charles R Greathouse IV, Mar 05 2013
Proof: m^3 + 3m^2 + 2m = m*(m+1)*(m+2) and the factors are pairwise relatively prime, because (m+1) is even. - Thomas Ordowski, Apr 20 2013
Conjecture: for every prime p, the numbers p# - 1, p#, p# + 1 are squarefree, where primorial p# = product of all primes <= p. - Thomas Ordowski, Apr 21 2013
Let f(m) = abs(mu(m*(m+1)*(m+2))), where mu(m) is the Moebius function, then the sum S(m) = f(1) + f(2) + ... + f(m) ~ k*m with the constant k = A206256 = 0.12548698.... - Thomas Ordowski, Apr 22 2013
All terms are congruent to 1 (mod 4). - Zak Seidov, Dec 22 2014

Examples

			85 is a term as 85 = 17*5, 86 = 43*2, 87 = 29*3.
		

References

  • P. R. Halmos, Problems for Mathematicians Young and Old. Math. Assoc. America, 1991, p. 28.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A007674, A016813, and A056911.

Programs

  • Haskell
    a007675 n = a007675_list !! (n-1)
    a007675_list = f 1 a008966_list where
       f n (u:xs'@(v:w:x:xs)) | u == 1 && w == 1 && v == 1 = n : f (n+4) xs
                              | otherwise = f (n+1) xs'
    -- Reinhard Zumkeller, Nov 05 2011
    
  • Maple
    select(t -> andmap(NumberTheory:-IsSquareFree,[t,t+1,t+2]), [seq(i,i=1..1000,4)]); # Robert Israel, Jul 16 2024
  • Mathematica
    Select[Range[1000], SquareFreeQ[#(# + 1)(# + 2)] &] (* Vladimir Joseph Stephan Orlovsky, Mar 30 2011 *)
    Transpose[Select[Partition[Select[Range[400], SquareFreeQ], 3, 1], Differences[#] == {1, 1} &]][[1]] (* Harvey P. Dale, Apr 11 2012 *)
    Select[Range[1, 499, 2], MoebiusMu[#^3 + 3#^2 + 2#] != 0 &] (* Alonso del Arte, Jan 16 2014 *)
    SequencePosition[Table[If[SquareFreeQ[n],1,0],{n,500}],{1,1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 14 2017 *)
  • PARI
    is(n)=issquarefree(n)&&issquarefree(n+1)&&issquarefree(n+2) \\ Charles R Greathouse IV, Mar 05 2013

Formula

Numbers m such that g(m)*g(m+1)*g(m+2) = 1, where g(w) = abs(mu(w)). - Labos Elemer
a(n) ~ c*n with c = 7.96895... = 1/A206256. - Charles R Greathouse IV, Mar 05 2013

A377046 Array read by downward antidiagonals where A(n,k) is the n-th term of the k-th differences of nonsquarefree numbers.

Original entry on oeis.org

4, 8, 4, 9, 1, -3, 12, 3, 2, 5, 16, 4, 1, -1, -6, 18, 2, -2, -3, -2, 4, 20, 2, 0, 2, 5, 7, 3, 24, 4, 2, 2, 0, -5, -12, -15, 25, 1, -3, -5, -7, -7, -2, 10, 25, 27, 2, 1, 4, 9, 16, 23, 25, 15, -10, 28, 1, -1, -2, -6, -15, -31, -54, -79, -94, -84, 32, 4, 3, 4, 6, 12, 27, 58, 112, 191, 285, 369
Offset: 0

Views

Author

Gus Wiseman, Oct 19 2024

Keywords

Comments

Row k is the k-th differences of A013929.

Examples

			Array form:
        n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:  n=9:
  ---------------------------------------------------------
  k=0:   4     8     9    12    16    18    20    24    25
  k=1:   4     1     3     4     2     2     4     1     2
  k=2:  -3     2     1    -2     0     2    -3     1    -1
  k=3:   5    -1    -3     2     2    -5     4    -2     4
  k=4:  -6    -2     5     0    -7     9    -6     6    -7
  k=5:   4     7    -5    -7    16   -15    12   -13    10
  k=6:   3   -12    -2    23   -31    27   -25    23   -13
  k=7: -15    10    25   -54    58   -52    48   -36    13
  k=8:  25    15   -79   112  -110   100   -84    49     1
  k=9: -10   -94   191  -222   210  -184   133   -48   -57
Triangle form:
   4
   8   4
   9   1  -3
  12   3   2   5
  16   4   1  -1  -6
  18   2  -2  -3  -2   4
  20   2   0   2   5   7   3
  24   4   2   2   0  -5 -12 -15
  25   1  -3  -5  -7  -7  -2  10  25
  27   2   1   4   9  16  23  25  15 -10
  28   1  -1  -2  -6 -15 -31 -54 -79 -94 -84
  32   4   3   4   6  12  27  58 112 191 285 369
		

Crossrefs

Initial rows: A013929, A078147, A376593.
The version for primes is A095195, noncomposites A376682, composites A377033.
A version for partitions is A175804, cf. A053445, A281425, A320590.
For squarefree numbers we have A377038, sums A377039, absolute A377040.
Triangle row-sums are A377047, absolute version A377048.
Column n = 1 is A377049, for squarefree A377041, for prime A007442 or A030016.
First position of 0 in each row is A377050.
For prime-power instead of nonsquarefree we have A377051.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A073576 counts integer partitions into squarefree numbers, factorizations A050320.

Programs

  • Mathematica
    nn=9;
    t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,SquareFreeQ[#]&]&,4,2*nn],k],nn],{k,0,nn}]
    Table[t[[j,i-j+1]],{i,nn},{j,i}]

Formula

A(i,j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) A013929(i+k).

A373127 Length of the n-th maximal antirun of squarefree numbers differing by more than one.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 4, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 5, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 4, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 2, 1, 2, 1, 2, 4, 2, 1, 4, 1, 3, 2, 1, 2, 1, 2, 1, 2, 2, 1, 4, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 4, 1, 3, 4, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The sum of this antirun is given by A373411.
An antirun of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by more than one.

Examples

			Row-lengths of:
   1
   2
   3  5
   6
   7 10
  11 13
  14
  15 17 19 21
  22
  23 26 29
  30
  31 33
  34
  35 37
  38
  39 41
  42
  43 46
  47 51 53 55 57
		

Crossrefs

Positions of first appearances are A373128, sorted A373200.
Functional neighbors: A007674, A027833 (partial sums A029707), A120992, A373403, A373408, A373409, A373411.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A077643 counts squarefree numbers with n bits, sum A373123.

Programs

  • Mathematica
    Length/@Split[Select[Range[100],SquareFreeQ],#1+1!=#2&]

A376311 Position of first appearance of n in the sequence of first differences of squarefree numbers, or the sequence ends if there is none.

Original entry on oeis.org

1, 3, 6, 31, 150, 515, 13391, 131964, 664313, 5392318, 159468672, 134453711, 28728014494, 50131235121, 634347950217, 48136136076258, 1954623227727573, 14433681032814706, 76465679305346797
Offset: 1

Views

Author

Gus Wiseman, Sep 22 2024

Keywords

Examples

			The sequence of squarefree numbers (A005117) is:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ...
The sequence of first differences (A076259) of squarefree numbers is:
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, ...
The positions of first appearances are a(n).
		

Crossrefs

This is the position of first appearance of n in A076259, ones A375927.
For compression instead of positions of first appearances we have A376305.
For run-lengths instead of first appearances we have A376306.
For run-sums instead of first appearances we have A376307.
For prime-powers instead of squarefree numbers we have A376341.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A003242 counts compressed compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259.
A013929 lists nonsquarefree numbers, differences A078147.
A116861 counts partitions by compressed sum, by compressed length A116608.

Programs

  • Mathematica
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    q=Differences[Select[Range[10000],SquareFreeQ]];
    Table[Position[q,k][[1,1]],{k,mnrm[q]}]

Extensions

a(11)-a(19) from Amiram Eldar, Sep 24 2024

A377038 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the squarefree numbers.

Original entry on oeis.org

1, 2, 1, 3, 1, 0, 5, 2, 1, 1, 6, 1, -1, -2, -3, 7, 1, 0, 1, 3, 6, 10, 3, 2, 2, 1, -2, -8, 11, 1, -2, -4, -6, -7, -5, 3, 13, 2, 1, 3, 7, 13, 20, 25, 22, 14, 1, -1, -2, -5, -12, -25, -45, -70, -92, 15, 1, 0, 1, 3, 8, 20, 45, 90, 160, 252, 17, 2, 1, 1, 0, -3, -11, -31, -76, -166, -326, -578
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2024

Keywords

Comments

Row n is the k-th differences of A005117 = the squarefree numbers.

Examples

			Array form:
        n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:  n=9:
  ----------------------------------------------------------
  k=0:   1     2     3     5     6     7    10    11    13
  k=1:   1     1     2     1     1     3     1     2     1
  k=2:   0     1    -1     0     2    -2     1    -1     0
  k=3:   1    -2     1     2    -4     3    -2     1     1
  k=4:  -3     3     1    -6     7    -5     3     0    -2
  k=5:   6    -2    -7    13   -12     8    -3    -2     3
  k=6:  -8    -5    20   -25    20   -11     1     5    -5
  k=7:   3    25   -45    45   -31    12     4   -10    10
  k=8:  22   -70    90   -76    43    -8   -14    20   -19
  k=9: -92   160  -166   119   -51    -6    34   -39    28
Triangle form:
   1
   2   1
   3   1   0
   5   2   1   1
   6   1  -1  -2  -3
   7   1   0   1   3   6
  10   3   2   2   1  -2  -8
  11   1  -2  -4  -6  -7  -5   3
  13   2   1   3   7  13  20  25  22
  14   1  -1  -2  -5 -12 -25 -45 -70 -92
  15   1   0   1   3   8  20  45  90 160 252
		

Crossrefs

Row k=0 is A005117.
Row k=1 is A076259.
Row k=2 is A376590.
The version for primes is A095195, noncomposites A376682, composites A377033.
A version for partitions is A175804, cf. A053445, A281425, A320590.
Triangle row-sums are A377039, absolute version A377040.
Column n = 1 is A377041, for primes A007442 or A030016.
First position of 0 in each row is A377042.
For nonsquarefree instead of squarefree numbers we have A377046.
For prime-powers instead of squarefree numbers we have A377051.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.

Programs

  • Mathematica
    nn=9;
    t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,!SquareFreeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}]
    Table[t[[j,i-j+1]],{i,nn},{j,i}]

Formula

A(i,j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) A005117(i+k).

A377430 Numbers k such that there is exactly one squarefree number between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

3, 4, 9, 10, 13, 14, 15, 22, 26, 33, 39, 48, 59, 60, 65, 85, 88, 89, 93, 104, 113, 116, 122, 142, 143, 147, 148, 155, 181, 188, 198, 201, 209, 212, 213, 224, 226, 234, 235, 244, 254, 264, 265, 268, 287, 288, 313, 320, 328, 332, 333, 341, 343, 353, 361, 366
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2024

Keywords

Examples

			Primes 4 and 5 are 7 and 11, and the interval (8,9,10) contains only squarefree 10, so 4 is in the sequence.
		

Crossrefs

For composite instead of squarefree we have A029707.
These are the positions of 1 in A061398, or 2 in A373198.
For no squarefree numbers we have A068360.
For prime-power instead of squarefree we have A377287.
For at least one squarefree number we have A377431.
For perfect-power instead of squarefree we have A377434.
A000040 lists the primes, differences A001223, seconds A036263.
A002808 lists the composites, complement A008578.
A005117 lists the squarefree numbers, complement A013929.
A377038 gives k-differences of squarefree numbers.

Programs

  • Maple
    R:= NULL: count:= 0: q:= 2:
    for k from 1 while count < 100 do
      p:= q; q:= nextprime(q);
      if nops(select(numtheory:-issqrfree,[$p+1 .. q-1]))=1 then
        R:= R,k; count:= count+1;
     fi
    od:
    R; # Robert Israel, Nov 29 2024
  • Mathematica
    Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],SquareFreeQ]]==1&]
  • PARI
    is(n,p=prime(n))=my(q=nextprime(p+1),s); for(k=p+1,q-1, if(issquarefree(k) && s++>1, return(0))); s==1 \\ Charles R Greathouse IV, Nov 29 2024

A373673 First element of each maximal run of powers of primes (including 1).

Original entry on oeis.org

1, 7, 11, 13, 16, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2024

Keywords

Comments

A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one.
The last element of the same run is A373674.
Consists of all powers of primes k such that k-1 is not a power of primes.

Examples

			The maximal runs of powers of primes begin:
   1   2   3   4   5
   7   8   9
  11
  13
  16  17
  19
  23
  25
  27
  29
  31  32
  37
  41
  43
  47
  49
		

Crossrefs

For composite antiruns we have A005381, max A068780, length A373403.
For prime antiruns we have A006512, max A001359, length A027833.
For composite runs we have A008864, max A006093, length A176246.
For prime runs we have A025584, max A067774, length A251092 or A175632.
For runs of prime-powers:
- length A174965
- min A373673 (this sequence)
- max A373674
- sum A373675
For runs of non-prime-powers:
- length A110969 (firsts A373669, sorted A373670)
- min A373676
- max A373677
- sum A373678
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
- sum A373679
A000961 lists all powers of primes (A246655 if not including 1).
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    pripow[n_]:=n==1||PrimePowerQ[n];
    Min/@Split[Select[Range[100],pripow],#1+1==#2&]//Most

A373676 First element of each maximal run of non-prime-powers.

Original entry on oeis.org

1, 6, 10, 12, 14, 18, 20, 24, 26, 28, 30, 33, 38, 42, 44, 48, 50, 54, 60, 62, 65, 68, 72, 74, 80, 82, 84, 90, 98, 102, 104, 108, 110, 114, 122, 126, 129, 132, 138, 140, 150, 152, 158, 164, 168, 170, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234
Offset: 1

Views

Author

Gus Wiseman, Jun 16 2024

Keywords

Comments

We consider 1 to be a power of a prime and a non-prime-power, but not a prime-power.
A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one.
The last element of the same run is A373677.
Consists of 1 and all non-prime-powers k such that k-1 is a power of a prime.

Examples

			The maximal runs of non-prime-powers begin:
   1
   6
  10
  12
  14  15
  18
  20  21  22
  24
  26
  28
  30
  33  34  35  36
  38  39  40
  42
  44  45  46
  48
  50  51  52
  54  55  56  57  58
  60
		

Crossrefs

See link for prime, composite, squarefree, and nonsquarefree runs/antiruns.
For runs of powers of primes:
- length A174965
- min A373673
- max A373674
- sum A373675
For runs of non-prime-powers:
- length A110969 (firsts A373669, sorted A373670)
- min A373676 (this sequence)
- max A373677
- sum A373678
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
- sum A373679
A000961 lists all powers of primes. A246655 is just prime-powers so lacks 1.
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    Select[Range[100],#==1||!PrimePowerQ[#]&&PrimePowerQ[#-1]&]

A373677 Last element of each maximal run of non-prime-powers.

Original entry on oeis.org

1, 6, 10, 12, 15, 18, 22, 24, 26, 28, 30, 36, 40, 42, 46, 48, 52, 58, 60, 63, 66, 70, 72, 78, 80, 82, 88, 96, 100, 102, 106, 108, 112, 120, 124, 126, 130, 136, 138, 148, 150, 156, 162, 166, 168, 172, 178, 180, 190, 192, 196, 198, 210, 222, 226, 228, 232, 238
Offset: 1

Views

Author

Gus Wiseman, Jun 16 2024

Keywords

Comments

We consider 1 to be a power of a prime and a non-prime-power, but not a prime-power.
A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one.
The first element of the same run is A373676.
Consists of all non-prime-powers k such that k+1 is a prime-power.

Examples

			The maximal runs of non-prime-powers begin:
   1
   6
  10
  12
  14  15
  18
  20  21  22
  24
  26
  28
  30
  33  34  35  36
  38  39  40
  42
  44  45  46
  48
  50  51  52
  54  55  56  57  58
  60
		

Crossrefs

See link for prime, composite, squarefree, and nonsquarefree runs/antiruns.
For runs of powers of primes:
- length A174965
- min A373673
- max A373674
- sum A373675
For runs of non-prime-powers:
- length A110969 (firsts A373669, sorted A373670)
- min A373676
- max A373677 (this sequence)
- sum A373678
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
- sum A373679
A000961 lists all powers of primes. A246655 is just prime-powers so lacks 1.
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    Select[Range[100],!PrimePowerQ[#]&&PrimePowerQ[#+1]&]
Previous Showing 11-20 of 106 results. Next