cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 195 results. Next

A098203 Euler totient function phi values of multiperfect numbers.

Original entry on oeis.org

1, 2, 12, 32, 240, 192, 4032, 6912, 6912, 153600, 435456, 5529600, 16773120, 11059200, 33177600, 143327232, 286654464, 433520640, 4294901760, 2627665920, 6019743744, 10705305600, 15925248000, 15606743040, 68719214592, 31850496000, 93640458240, 100329062400, 172009474560
Offset: 1

Views

Author

Labos Elemer, Sep 23 2004

Keywords

Crossrefs

Formula

a(n) = A000010(A007691(n)).

Extensions

More terms from Amiram Eldar, May 10 2024

A114887 Multiperfect numbers sigma(n) = k*n, which are divisible by the sum of their prime factors without repetition.

Original entry on oeis.org

120, 672, 32760, 2178540, 1379454720, 14182439040, 518666803200, 30823866178560, 71065075104190073088, 154345556085770649600, 9186050031556349952000, 680489641226538823680000
Offset: 1

Views

Author

Sven Simon, Feb 19 2006

Keywords

Comments

From a list of about 5000 multiperfect numbers, 38 numbers were found with the property, all having k <= 9, the largest was the only one having k=9. A091443 uses sopfr with repetition.
Conjecture: the sequence is finite.

Examples

			a(0) = 120 = 2^3*3*5, sopf(120) = 2+3+5 = 10.
		

Crossrefs

Cf. A091443.
Intersection of A007691 and A089352. - Michel Marcus, Oct 08 2017

A153801 Index of Mersenne number A000225 that is also Mersenne prime A000668, minus n-th prime: a(n) = A000043(n) - A000040(n).

Original entry on oeis.org

0, 0, 0, 0, 2, 4, 2, 12, 38, 60, 76, 90, 480, 564, 1232, 2150, 2222, 3156, 4186, 4352, 9616, 9862, 11130, 19848, 21604, 23108, 44394, 86136, 110394, 131936, 215964, 756708, 859296, 1257648, 1398120, 2976070, 3021220, 6972430, 13466750, 20995838, 24036404, 25964770
Offset: 1

Views

Author

Omar E. Pol, Jan 13 2009

Keywords

Crossrefs

Programs

  • Mathematica
    With[{max = 48}, MersennePrimeExponent[Range[max]] - Prime[Range[max]]] (* Amiram Eldar, Oct 21 2024 *)

Extensions

More terms from R. J. Mathar, Feb 19 2009
More terms from Jinyuan Wang, Mar 02 2020

A165701 Numbers n such that 5^n-6 is prime.

Original entry on oeis.org

2, 4, 5, 6, 10, 53, 76, 82, 88, 242, 247, 473, 586, 966, 1015, 1297, 1825, 2413, 2599, 2833, 5850, 5965, 6052, 27199, 49704, 79000
Offset: 1

Views

Author

M. F. Hasler and Farideh Firoozbakht, Oct 30 2009

Keywords

Comments

Numbers corresponding to the a(n) for n>11 are probable prime.
If Q is a 4-perfect number and gcd(Q, 5*(5^a(n)-6))=1 then m=5^(a(n)-1)
(5^a(n)-6)*Q is a solution of the equation sigma(x)=5(x+Q)(see comment lines of the sequence A058959). 142990848 is the smallest 4-perfect number m such that 5 doesn't divide m.
a(27) > 10^5. - Robert Price, Feb 03 2014

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[5^n-6],Print[n]],{n,8888}]
  • PARI
    is(n)=ispseudoprime(5^n-6) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(24)-a(26) from Robert Price, Feb 03 2014

A166070 Sorted sequence of primes and multiply perfect numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 23, 28, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 120, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263
Offset: 1

Views

Author

Jaroslav Krizek, Oct 06 2009, Oct 16 2009

Keywords

Comments

Numbers k such that sigma(k) is divisible by all proper divisors of k.

Examples

			a(4) = 6: all proper divisors of 6 (1, 2, 3) divide sigma(6) = 12.
		

Crossrefs

Cf. A053813.

Programs

  • Mathematica
    Select[Range[300],And@@Divisible[DivisorSigma[1,#],Most[Divisors[#]]]&] (* Harvey P. Dale, Jan 18 2015 *)

Formula

{1} Union A053813 Union A166069.
{1} Union A000040 Union A000396 Union A166069.

A183013 Largest members of k-sociable cycles of order r.

Original entry on oeis.org

6, 28, 120, 284, 496, 672, 1210, 2924, 5564, 6368, 8128, 10856, 14595, 15472, 18416, 30240, 32760, 66992, 71145, 76084, 87663, 88730, 123152, 124155, 139815, 153176, 168730, 176336, 180848, 202444, 203432, 365084, 389924, 399592, 430402
Offset: 1

Views

Author

William Rex Marshall, Jan 08 2011

Keywords

Comments

A k-sociable (or multisociable) cycle of order r consists of r distinct positive integers such that the sum of the aliquot divisors (or proper divisors) of each is equal to k times the next term in the cycle, where k (the multiplicity) is a fixed positive integer.
A183014(n) gives the multiplicity of the cycle with largest term a(n).
A183015(n) gives the order of the cycle with largest term a(n).
If examples of two or more multisociable cycles with the same largest term exist, the largest term is repeated in this sequence, and corresponding multiplicities listed in order of increasing size in A183014. (No such examples are known. Do any exist?)

Crossrefs

Cf. A000396, A001065, A002046, A007691, A183014 (multiplicities), A183015 (orders), A183019, A183020.

A183016 Conjectured list of smallest terms of k-sociable cycles of order r.

Original entry on oeis.org

6, 28, 120, 220, 496, 672, 1184, 2620, 5020, 6232, 8128, 10744, 12285, 12496, 14316, 17296, 30240, 32760, 63020, 66928, 67095, 69615, 79750, 100485, 122265, 122368, 141664, 142310, 171856, 176272, 185368, 196724, 280540, 308620, 319550
Offset: 1

Views

Author

William Rex Marshall, Jan 08 2011

Keywords

Comments

A k-sociable (or multisociable) cycle of order r consists of r distinct positive integers such that the sum of the aliquot divisors (or proper divisors) of each is equal to k times the next term in the cycle, where k (the multiplicity) is a fixed positive integer.
A183017(n) gives the multiplicity of the cycle with smallest term a(n).
A183018(n) gives the order of the cycle with smallest term a(n).
If examples of two or more multisociable cycles with the same smallest term exist, the smallest term is repeated in this sequence, and corresponding multiplicities listed in order of increasing size in A183017. (No such examples are known. Do any exist?)

Crossrefs

Cf. A000396, A001065, A002025, A003416, A007691, A183017 (multiplicities), A183018 (orders), A183019, A183021.

A183019 Conjectured list of multisociable numbers.

Original entry on oeis.org

6, 28, 120, 220, 284, 496, 672, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368, 8128, 10744, 10856, 12285, 12496, 14264, 14288, 14536, 14595, 15472, 17296, 18416, 30240, 32760, 63020, 66928, 66992, 67095, 69615, 71145, 76084, 79750, 87633
Offset: 1

Views

Author

William Rex Marshall, Jan 08 2011

Keywords

Crossrefs

A227303 Numbers k such that k divides sigma(3*k).

Original entry on oeis.org

1, 2, 4, 28, 40, 78, 90, 224, 360, 496, 546, 2016, 2184, 8128, 10080, 10920, 11880, 66528, 145236, 174592, 714240, 726180, 1571328, 4333056, 6168960, 7856640, 12065760, 15177600, 33550336, 47663616, 69521760, 80196480, 91963648, 99993600, 156854880, 459818240, 492101632
Offset: 1

Views

Author

Alex Ratushnyak, Jul 05 2013

Keywords

Comments

If k belongs to the sequence, then sigma(3*k)/k is an integer, so sigma(3*k)/(3*k) is either an integer or a third of an integer, so 3*k is either multiperfect or belongs to A160320 or A160321. - Michel Marcus, Jul 09 2013

Crossrefs

Programs

  • Mathematica
    k = 0; lst = {}; While[k < 10^11, If[ Mod[ DivisorSigma[1, 3 k], k] == 0, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Mar 07 2021 *)
  • PARI
    isok(k) = !(sigma(3*k) % k); \\ Michel Marcus, Mar 07 2021

A227306 Numbers k that divide sigma(k) + sigma(k-1).

Original entry on oeis.org

2, 6, 34, 50, 216, 236, 262, 386, 898, 924, 945, 1456, 2380, 5356, 6468, 6624, 8362, 14100, 23496, 26938, 46594, 80876, 196344, 212796, 1661136, 4070200, 4160920, 4626700, 5244548, 5462384, 17062316, 60464628, 217408416, 248621604, 262792908, 265371336, 323987588
Offset: 1

Views

Author

Alex Ratushnyak, Jul 05 2013

Keywords

Comments

Is 945 the only odd term? - Zak Seidov, Jul 06 2013
945 and 19910536425 are the only odd terms below 2^36. - Alex Ratushnyak, Jul 08 2013
The third odd term is a(58) = 841488503841. - Giovanni Resta, Apr 04 2014

Crossrefs

Programs

  • Mathematica
    With[{nn=324*10^6},Select[Thread[{Total/@Partition[DivisorSigma[ 1,Range[ nn]],2,1],Range[ 2,nn]}],Divisible[#[[1]],#[[2]]]&][[All,2]]] (* Harvey P. Dale, May 29 2020 *)
Previous Showing 91-100 of 195 results. Next