cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 72 results. Next

A226120 Decimal expansion of Sum_{n>=1} n^3/(exp(2*Pi*n/7)-1).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 9, 0, 1, 6, 1, 7, 6, 7, 8, 8, 8, 6, 6, 2, 6, 7, 5, 5, 8, 4, 3, 5, 9, 3, 0, 5, 8, 5, 5, 4, 4, 5, 3, 3, 3, 4, 8, 0, 2, 5, 4, 8, 9, 7, 8, 4, 3, 4, 0, 6, 1, 0, 9, 9, 4, 3, 8, 7, 3, 7, 8, 5, 0, 6, 7, 1, 4, 8, 0, 1, 7, 9, 1, 6, 2, 7, 1, 3, 6, 6, 2, 1
Offset: 2

Views

Author

Keywords

Comments

An almost-integer discovered by Simon Plouffe. The computed sum equals 10 within 15 digits.

Examples

			10.00000000000000019016176788866267558435930585544533348025489784340610994387...
		

Crossrefs

Cf. A060295 (famous almost-integer: Ramanujan's constant), A226121 (another surprising almost-integer by Simon Plouffe), A007775, A089034.

Programs

  • Mathematica
    NSum[n^3/(Exp[2*Pi*n/7] - 1), {n, 1, Infinity}, NSumTerms -> 220,    WorkingPrecision -> 100] // RealDigits[#, 10, 100] & // First

Extensions

Offset corrected by Rick L. Shepherd, Jan 01 2014

A227863 Numbers congruent to {1,49} mod 120.

Original entry on oeis.org

1, 49, 121, 169, 241, 289, 361, 409, 481, 529, 601, 649, 721, 769, 841, 889, 961, 1009, 1081, 1129, 1201, 1249, 1321, 1369, 1441, 1489, 1561, 1609, 1681, 1729, 1801, 1849, 1921, 1969, 2041, 2089, 2161, 2209, 2281, 2329, 2401, 2449, 2521, 2569, 2641, 2689
Offset: 1

Views

Author

Gary Croft, Nov 01 2013

Keywords

Comments

The squares of natural numbers not divisible by 2, 3 or 5 and therefore the squares of prime numbers >5 are confined to this sequence.

Crossrefs

Programs

  • Mathematica
    Table[60 n - 6 (-1)^n - 65, {n, 50}] (* Bruno Berselli, Nov 04 2013 *)
    LinearRecurrence[{1,1,-1},{1,49,121},50] (* or *) #+{1,49}&/@(120*Range[0,30])//Flatten (* Harvey P. Dale, Jul 13 2025 *)
  • PARI
    a(n)=n\2*120+[-71,1][n%2+1] \\ Charles R Greathouse IV, Aug 26 2014

Formula

G.f.: x*(1 + 48*x + 71*x^2)/((1 + x)*(1 - x)^2). [Bruno Berselli, Nov 04 2013]
a(n) = 60*n - 6*(-1)^n - 65. [Bruno Berselli, Nov 04 2013]
E.g.f.: 71 + (60*x - 65)*exp(x) - 6*exp(-x). - David Lovler, Sep 10 2022

A274172 Nonsquare composites with all prime factors larger than 5.

Original entry on oeis.org

77, 91, 119, 133, 143, 161, 187, 203, 209, 217, 221, 247, 253, 259, 287, 299, 301, 319, 323, 329, 341, 343, 371, 377, 391, 403, 407, 413, 427, 437, 451, 469, 473, 481, 493, 497, 511, 517, 527, 533, 539, 551, 553, 559, 581, 583, 589
Offset: 1

Views

Author

Dimitris Valianatos, Jun 12 2016

Keywords

Comments

Nonsquare composites not divisible by 2,3,5.

Examples

			377 = 13*29 is a term.
		

Crossrefs

Intersection of A007775 and A089229. - Felix Fröhlich, Jun 12 2016

Programs

  • Maple
    filter:= n -> igcd(n,30)=1 and not issqr(n) and not isprime(n):
    select(filter, [seq(i,i=3..1000,2)]); # Robert Israel, May 30 2021
  • PARI
    { for(n=1,600, if(!(isprime(n) || n%2==0 || n%3==0 || n%5==0 || issquare(n)), print1(n", ")))}
    
  • PARI
    is(n) = my(f=factor(n)); if(!issquare(n),f[1,1]>5 && matsize(f)[1]>1,0) \\ David A. Corneth, Jun 12 2016

A343357 7-rough abundant numbers.

Original entry on oeis.org

20169691981106018776756331, 21373852696395930345517903, 21975933054040886129898689, 23476198863254546445077041, 23782174126975753483041047, 23836908704943476736166573, 24137500239684251978741183, 24272002214551310731350839, 24955720586792192723783257, 24986334842265665051802619
Offset: 1

Views

Author

David A. Corneth, Apr 12 2021

Keywords

Comments

Each term has at least A001276(4) = 15 distinct prime factors and A108227(4) = 18 prime factors counted with multiplicity. - Jianing Song, Apr 13 2021
The smallest term with exactly 15 distinct prime factors is a(830) = 465709156638373299218537971 = 7^3 * 11^2 * 13^2 * 17^2 * 19 * 23 * ... * 61. - Jianing Song, Apr 14 2021

Examples

			k = 20169691981106018776756331 is in the sequence as its smallest prime factor is at least 7 and it is abundant as sigma(k) > 2*k.
		

Crossrefs

Programs

  • PARI
    is(n) = gcd(n, 30) == 1 && sigma(n) > 2*n

A343737 Highly composite 7-rough numbers: numbers that are not divisible by any prime smaller than 7 and whose number of divisors reaches a record.

Original entry on oeis.org

1, 7, 49, 77, 539, 1001, 5929, 7007, 17017, 77077, 119119, 323323, 1310309, 2263261, 7436429, 24895871, 52055003, 215656441, 572605033, 1509595087, 6685349671, 16605545957, 46797447697, 215872097441, 247357937827, 514771924667, 1731505564789, 6692035020671
Offset: 1

Views

Author

Jon E. Schoenfield, Jun 27 2021

Keywords

Examples

			   n   a(n)   prime factorization     number of divisors
  --  ------  ----------------------  ------------------
   1       1  -                                1
   2       7  7                                2
   3      49  7^2                              3
   4      77  7   * 11                         4
   5     539  7^2 * 11                         6
   6    1001  7   * 11   * 13                  8
   7    5929  7^2 * 11^2                       9
   8    7007  7^2 * 11   * 13                 12
   9   17017  7   * 11   * 13   * 17          16
  10   77077  7^2 * 11^2 * 13                 18
  11  119119  7^2 * 11   * 13   * 17          24
		

Crossrefs

A376318 The number of distinct values of x+y+z (mod n) when x*y*z = 1 (mod n).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 7, 2, 4, 4, 11, 2, 13, 7, 8, 3, 17, 4, 19, 4, 14, 11, 23, 4, 20, 13, 11, 7, 29, 8, 31, 6, 22, 17, 28, 4, 37, 19, 26, 8, 41, 14, 43, 11, 16, 23, 47, 6, 49, 20, 34, 13, 53, 11, 44, 14, 38, 29, 59, 8, 61, 31, 28, 11, 52, 22, 67, 17, 46, 28, 71, 8, 73, 37, 40, 19, 77, 26
Offset: 1

Views

Author

W. Edwin Clark, Sep 22 2024

Keywords

Comments

The values of n for which a(n) = n seem to be A007775, but I have no proof of this.

Crossrefs

Programs

  • Maple
    a:=proc(n)
    local x,y,z,N;
    N:=NULL;
    for x from 0 to n-1 do
     for y from x to n-1 do
      for z from y to n-1 do
       if (x*y*z) mod n = 1 mod n then N:=N,(x+y+z) mod n; fi;
      od:
     od:
    od:
    nops({N});
    end:
  • PARI
    a(n)=my(v=vectorsmall(n)); for(x=1,n, if(gcd(x,n)>1, next); for(y=1,x, if(gcd(y,n)>1, next); my(z=1/Mod(x*y,n)); v[lift(x+y+z)+1]=1)); sum(i=1,n, v[i]) \\ Charles R Greathouse IV, Sep 23 2024
  • Python
    def A376318(n):
        s = set()
        for x in range(n):
            for y in range(x,n):
                try:
                    s.add((x+y+pow(x*y%n,-1,n))%n)
                except:
                    continue
        return len(s) # Chai Wah Wu, Sep 23 2024
    

A230113 Digital root of summed Fibonacci and Lucas digital roots indexed by numbers not divisible by 2, 3 or 5.

Original entry on oeis.org

3, 4, 5, 6, 6, 5, 4, 3, 4, 6, 6, 5, 4, 3, 3, 5, 6, 5, 4, 3, 3, 4, 5, 6, 5, 3, 3, 4, 5, 6, 6, 4, 3, 4, 5, 6, 6, 5, 4, 3, 4, 6, 6, 5, 4, 3, 3, 5, 6, 5, 4, 3, 3, 4, 5, 6, 5, 3, 3, 4, 5, 6, 6, 4, 3, 4, 5, 6, 6, 5, 4, 3, 4, 6, 6, 5, 4, 3, 3, 5, 6, 5, 4, 3, 3, 4, 5, 6, 5, 3, 3, 4, 5, 6, 6, 4
Offset: 1

Views

Author

Gary Croft, Dec 20 2013

Keywords

Comments

32-beat repeating sequence is periodically palindromic starting at Length(40), then at Lengths (72)...(104)...(136)...(168)...{+32 terms ... repeat ... n}.

Examples

			Referencing A227896 (Fibo) and A233766 (Lucas): 1st Fibo term (1) + 1st Lucas term (2) = 3 = digital root 3. Likewise, 2nd Fibo term (4) + 2nd Lucas term (9) = 13 = digital root 4.
		

Crossrefs

Formula

Conjectures from Colin Barker, Sep 22 2019: (Start)
G.f.: x*(3 + x + x^2 + x^3 - x^5 - x^6 - x^7 + x^8 + 2*x^9 - x^11 - x^12 - x^13 + 2*x^15 + 4*x^16) / ((1 - x)*(1 + x^16)).
a(n) = a(n-1) - a(n-16) + a(n-17) for n>17.
(End)

A246508 Digital root of numbers congruent to {1,7,11,13,17,19,23,29} modulo 30.

Original entry on oeis.org

1, 7, 2, 4, 8, 1, 5, 2, 4, 1, 5, 7, 2, 4, 8, 5, 7, 4, 8, 1, 5, 7, 2, 8, 1, 7, 2, 4, 8, 1, 5, 2, 4, 1, 5, 7, 2, 4, 8, 5, 7, 4, 8, 1, 5, 7, 2, 8, 1, 7, 2, 4, 8, 1, 5, 2, 4, 1, 5, 7, 2, 4, 8, 5, 7, 4, 8, 1, 5, 7, 2, 8, 1, 7, 2, 4, 8, 1, 5, 2, 4, 1, 5, 7, 2, 4, 8, 5, 7, 4
Offset: 1

Views

Author

Gary Croft, Nov 14 2014

Keywords

Comments

Period 24 repeating sequence, the digital root squares of which produce period 24 palindromic sequence A240924.

Crossrefs

Cf. A007775 (numbers not divisible by 2, 3 or 5), A240924 (digital root of this sequence squared).

Formula

a(n) = A010888(A007775(n)). - Michel Marcus, Nov 25 2014
G.f.: ( -x*(1 +7*x +2*x^2 +4*x^3 +8*x^4 +x^5 +5*x^6 +2*x^7 +4*x^8 +x^9 +5*x^10 +7*x^11 +2*x^12 +4*x^13 +8*x^14 +5*x^15 +7*x^16 +4*x^17 +8*x^18 +x^19 +5*x^20 +7*x^21 +2*x^22 +8*x^23) ) / ( (x-1) *(1+x+x^2) *(1+x) *(1-x+x^2) *(1+x^2) *(x^4-x^2+1) *(1+x^4) *(x^8-x^4+1) ). - R. J. Mathar, Sep 22 2016

A246541 Take the squares of all P_(n+2)-rough numbers less than the (n+1)-th primorial and mod each by the (n+1)-th primorial. There will be a(n) different results.

Original entry on oeis.org

1, 2, 6, 30, 180, 1440, 12960, 142560, 1995840, 29937600, 538876800, 10777536000, 226328256000, 5205549888000, 135344297088000, 3924984615552000, 117749538466560000, 3885734769396480000, 136000716928876800000, 4896025809439564800000, 190945006568143027200000
Offset: 1

Views

Author

John B. Yin, Aug 29 2014

Keywords

Comments

The P_(n+2)-rough numbers less than the (n+1)-th primorial also comprise the reduced residue system of the (n+1)-th primorial.
The conjectured formula from Jon E. Schoenfield is true. This can be seen by considering that each odd prime p has exactly (p+1)/2 quadratic residues (mod p), of which (p-1)/2 are nonzero. The P_(n+2)-rough numbers less than the (n+1)-th primorial comprise all combinations of nonzero residues modulo the first n+1 primes. So for each odd prime p, the p-1 nonzero residues map to (p-1)/2 (nonzero) residues after squaring. - Bert Dobbelaere, Aug 09 2023

Examples

			For n=2, P_(n+2) = 7.
The 7-rough numbers less than 2*3*5 are 1,7,11,13,17,19,23,29.
The squares of those numbers mod 2*3*5 are 1,19,1,19,19,1,19,1.
There are 2 different results: 1 and 19; so a(2) = 2.
		

Crossrefs

Cf. A002110 (primorial).
Cf. k-rough numbers A007310 (k=5), A007775 (k=7), A008364 (k=11), A008365 (k=13), A008366 (k=17), A166061 (k=19), A166063 (k=23).
Cf. A323739.

Programs

  • Java
    import java.util.TreeSet;
    for(int z = 1; z < 10 ; z++) {
    int n = z;
    int numNumPerLine = 210;
    int[] primes = {2,3,5,7,11,13,17,19,23,29,31,37,41,43};
    int numRepeats = 1;
    int numSpaces = 1;
    for(int i = 0; i < n + 1; i++) {
    numSpaces *= (primes[i] - 1);
    }
    int counter = 0;
    long integerLength = 1;
    for(int i = 0; i < n + 1; i++) {
    integerLength *= primes[i];
    }
    TreeSet numResults = new TreeSet();
    numSpaces/=2;
    for(int i = 1; i < integerLength / 2; i+=2) {
    boolean isInList = true;
    for(int j = 1; j < n + 1; j++) {
    if(i % primes[j] == 0) {
    isInList = false;
    }
    }
    if(isInList) {
    long k = i % integerLength;
    if(k != 0) {
    long l = (k * k) % integerLength;
    if(!numResults.contains(l)) {
    numResults.add(l);
    }
    }
    }
    }
    System.out.println(numResults.size());
    }
    
  • PARI
    a(n) = {hp = prod(k=1, n+1, prime(k)); rp = prod(k=1, n+2, prime(k)); v = []; for (i=1, hp, if (gcd(i, rp) == 1, nv = i^2 % hp; if (! vecsearch(v, nv), v = vecsort(concat(v, nv))););); #v;} \\ Michel Marcus, Sep 06 2014

Formula

Conjecture: a(n) = (1/2^n)*Product_{j=1..n} (prime(j+1)-1) = A005867(n+1)/2^n. - Jon E. Schoenfield, Feb 20 2019
a(n) = A323739(n+1). - Bert Dobbelaere, Aug 09 2023

A275591 a(n) = n^2 + 9*n + 1.

Original entry on oeis.org

1, 11, 23, 37, 53, 71, 91, 113, 137, 163, 191, 221, 253, 287, 323, 361, 401, 443, 487, 533, 581, 631, 683, 737, 793, 851, 911, 973, 1037, 1103, 1171, 1241, 1313, 1387, 1463, 1541, 1621, 1703, 1787, 1873, 1961, 2051, 2143, 2237, 2333, 2431, 2531, 2633, 2737
Offset: 0

Views

Author

Miquel Cerda, Aug 02 2016

Keywords

Comments

Also, nonnegative integers m such that 4*m + 77 is a square. The negative values of m are -7, -13, -17, -19.
The product of two consecutive terms belongs to the sequence. In fact: a(k)*a(k+1) = a(k*(k+1)+9*k+1).

Crossrefs

Cf. A028569.
Subsequence of A007775.

Programs

Formula

O.g.f.: (1 + 8*x - 7*x^2)/(1 - x)^3. - Colin Barker, Aug 03 2016
E.g.f.: (1 + 10*x + x^2)*exp(x).
a(n) = a(-n-9) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Colin Barker, Aug 03 2016
a(n) = A048058(n-1) + A008592(n-1) for n>0.
a(n) = 1 + A028569(n). - Omar E. Pol, Aug 02 2016
a(n) + a(-n) = (n-1)^2 + (n+1)^2.
Sum_{i>=0} 1/a(i) = 9736/29393 + tan(sqrt(77)*Pi/2)*Pi/sqrt(77) = 1.301517...

Extensions

Edited and extended by Bruno Berselli, Aug 05 2016
Previous Showing 61-70 of 72 results. Next