cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 52 results. Next

A346555 7-Sondow numbers: numbers k such that p^s divides k/p + 7 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 2, 6, 15, 78, 294, 12642, 539026980558
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 7 (mod k).
A positive integer k is a 7-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 7 for every prime power divisor p^s of k.
2) 7/k + Sum_{prime p|k} 1/p is an integer.
3) 7 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 7 (mod k).

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, this sequence, A346556, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
    Select[Range[10000000],Sondow[7][#]&]

Extensions

a(8) from Martin Ehrenstein, Feb 04 2022

A346556 8-Sondow numbers: numbers k such that p^s divides k/p + 8 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 3, 16, 48, 336, 14448, 376464, 17716019376, 419963172816
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 8 (mod k).
A positive integer k is a 8-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 8 for every prime power divisor p^s of k.
2) 8/k + Sum_{prime p|k} 1/p is an integer.
3) 8 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 8 (mod k).
Other numbers in the sequence: 17716019376, 419963172816, 67923372668477507285654170088688

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, this sequence, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
    Select[Range[400000],Sondow[8][#]&]

Extensions

a(8)-a(9) verified by Martin Ehrenstein, Feb 04 2022

A346557 9-Sondow numbers: numbers k such that p^s divides k/p + 9 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 2, 5, 22, 54, 378, 16254, 423522, 19930521798, 472458569418
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 9 (mod k).
A positive integer k is a 9-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 9 for every prime power divisor p^s of k.
2) 9/k + Sum_{prime p|k} 1/p is an integer.
3) 9 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 9 (mod k).
Other numbers in the sequence: 19930521798, 472458569418, 76413794252037195696360941349774

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, A346556, this sequence.

Programs

  • Mathematica
    Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
    Select[Range[1000000],Sondow[9][#]&]

Extensions

a(9)-a(10) verified by Martin Ehrenstein, Feb 04 2022

A349193 1-Sondow numbers: numbers j such that p divides j/p + 1 for every prime divisor p of j.

Original entry on oeis.org

1, 2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086
Offset: 1

Views

Author

Keywords

Comments

These are the weak primary pseudoperfect numbers mentioned in Grau-Oller-Sondow (2013).
Includes the primary pseudoperfect numbers (A054377). Any weak primary pseudoperfect number which is not a primary pseudoperfect number must have more than 58 distinct prime factors, and therefore must be greater than 10^110; none are known.
A positive integer j is a k-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides j/p + k for every prime power divisor p^s of j.
2) k/j + Sum_{prime p|j} 1/p is an integer.
3) k + Sum_{prime p|j} j/p == 0 (mod j).
4) Sum_{i=1..j} i^A000010(j) == k (mod j).
Numbers m such that A235137(m) == 1 (mod m).

Crossrefs

(-1) and (-2)-Sondow numbers: A326715, A330069.
2-Sondow to 9-Sondow numbers: A330068, A346551, A346552, A346553, A346554, A346555, A346556, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:= Sondow[mu][n]= Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]];
    Select[Range[100000],Sondow[1][#]&]

A199767 Numbers m for which Sum_{i=1..k} (1+1/p_i) + Product_{i=1..k} (1+1/p_i) is an integer, where p_i are the k prime factors of m (with multiplicity).

Original entry on oeis.org

21, 45, 432, 740, 1728, 3456, 3888, 5616, 12096, 23760, 46656, 52164, 131328, 152064, 186624, 195656, 233280, 311472, 606528, 618192, 746496, 926208, 933120, 979776, 1273536, 1403136, 2985984, 3221456, 3732480, 5178816, 5412096, 5971968, 9704448, 13651200
Offset: 1

Views

Author

Paolo P. Lava, Nov 22 2011

Keywords

Comments

The numbers of the sequence are the solution of the differential equation m’=(a-k)*m-b, which can also be written as A003415(m)=(a-k)*m-A003958(m), where k is the number of prime factors of m, and a is the integer Sum_{i=1..k} (1+1/p_i) + Product_{1=1..k} (1+1/p_i).
The numbers of the sequence satisfy also Sum_{i=1..k} (1-1/p_i) - Product_{i=1..k} (1+1/p_i) = some integer.

Examples

			740 has prime factors 2, 2, 5, 37. 1 + 1/2 + 1 + 1/2 + 1 + 1/5 + 1 + 1/37 = 967/185 is the sum over 1+1/p_i. (1+1/2) * (1+1/2) * (1+1/5) * (1+1/37) = 513/185 is the product over 1+1/p_i. 967/185 + 513/185 = 8 is an integer.
		

Crossrefs

Programs

  • Maple
    isA199767 := proc(n)
        p := ifactors(n)[2] ;
        add(op(2,d)+op(2,d)/op(1,d),d=p) + mul((1+1/op(1,d))^op(2,d),d=p) ;
        type(%,'integer') ;
    end proc:
    for n from 20 do
        if isA199767(n) then
               printf("%d,\n",n);
        end if;
    end do: # R. J. Mathar, Nov 23 2011

A326689 Numerator of the fraction (Sum_{prime p | n} 1/p - 1/n).

Original entry on oeis.org

-1, 0, 0, 1, 0, 2, 0, 3, 2, 3, 0, 3, 0, 4, 7, 7, 0, 7, 0, 13, 3, 6, 0, 19, 4, 7, 8, 17, 0, 1, 0, 15, 13, 9, 11, 29, 0, 10, 5, 27, 0, 20, 0, 25, 23, 12, 0, 13, 6, 17, 19, 29, 0, 22, 3, 5, 7, 15, 0, 61, 0, 16, 29, 31, 17, 10, 0, 37, 25, 29, 0, 59, 0, 19, 13, 41
Offset: 1

Views

Author

Jonathan Sondow, Jul 18 2019

Keywords

Comments

See Comments on denominators in A326690.

Examples

			-1/1, 0/1, 0/1, 1/4, 0/1, 2/3, 0/1, 3/8, 2/9, 3/5, 0/1, 3/4, 0/1, 4/7, 7/15, 7/16, 0/1, 7/9, 0/1, 13/20, 3/7, 6/11, 0/1, 19/24, 4/25, 7/13, 8/27, 17/28, 0/1, 1/1
		

Crossrefs

Denominators are A326690. Cf. also A007850, A309132, A309235, A309378.
Cf. A028235.

Programs

  • Mathematica
    PrimeFactors[n_] := Select[Divisors[n], PrimeQ];
    g[n_] := Numerator[Sum[1/p, {p, PrimeFactors[n]}] - 1/n];
    Table[ g[n], {n, 100}]
  • PARI
    a(n) = numerator(sumdiv(n, d, isprime(d)/d) - 1/n); \\ Michel Marcus, Jul 19 2019

Formula

a(p) = 0 if p is a prime.
a(g) = 1 if g is a known Giuga number (see my 2nd comment in A007850).

A189710 Numbers n such that n'' = n'-1 where n' and n'' are respectively the first and the second arithmetic derivative of n (A003415).

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 185, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263
Offset: 1

Views

Author

Giorgio Balzarotti, Apr 25 2011

Keywords

Comments

The composite numbers in the sequences are: 9, 185, 341, 377, 437, 9005, 30413, 33953, 41009, 51533, 82673, 92909,....

Examples

			9' = 6, 9''= 6'= 5, 9" = 9'- 1 -> 9 is in the sequence.
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a189710 n = a189710_list !! (n-1)
    a189710_list = elemIndices 0 $
       zipWith (-) (map a003415 a003415_list) (map pred a003415_list)
    -- Reinhard Zumkeller, May 09 2011
  • Maple
    #using Michael B. Porter's code from A003415
    der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2])
    for i from 1 to n do a:=der(der(i))-der(i)+1; if a=0 then j:=j+1; B[j]:=i; end if od

A190273 Numbers n such that n' = m+1, with n and m semiprimes and gcd(m,n)>1, where n' is the arithmetic derivative of n.

Original entry on oeis.org

6, 10, 21, 26, 39, 55, 57, 74, 93, 111, 122, 146, 155, 201, 203, 253, 301, 305, 314, 327, 381, 386, 417, 471, 497, 543, 554, 597, 626, 633, 689, 737, 755, 791, 794, 842, 889, 905, 914, 921, 1011, 1027, 1055, 1081, 1082, 1137, 1226, 1227, 1322, 1346, 1379, 1461, 1466, 1477, 1497, 1514, 1623, 1655, 1703, 1711, 1713, 1731, 1751, 1754, 1893, 1967, 1994
Offset: 1

Views

Author

Giorgio Balzarotti, May 07 2011

Keywords

Comments

The sequence is related to the Rassias Conjecture ("for any prime p there are two primes p1 and p2 such that p*p1=p1+p2+1, p>2, p2>p1", see A190272-A190275), because n = p1*p2, m=p1*p -> p1*p = p1+p2-1. The sequence includes the cases with p=p1 (or p2). Generalization can be achieved by removing semiprimarity condition or accepting gcd(n,m)=1. The differential equation in its general form n'=m+1 includes Giuga Numbers, i.e., n'=b*n+1, or n'=n+1 (A007850).
These are semiprimes n = p*q such that 1/p + 1/q - 1/n = P/Q, where P <> Q are primes. Cf. A326690. - Amiram Eldar and Thomas Ordowski, Jul 25 2019

Examples

			n=6, 6'=5, m=5+1=6, gcd(6,6)=6 -> a(1)=6
		

Crossrefs

Cf. A001358 (semiprimes), A003415 (arithmetic derivative), A007850 (Giuga numbers), A190272 (n'=m-1), A190273, A190274, A190275.

Programs

  • Maple
    der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
    seq(`if`(bigomega(i)=2 and bigomega(der(i)-1)=2 and gcd(i,der(i)-1)>1,i,NULL),i=1..2000);

A235138 a(n) = Sum_{k=1..n} k^phi(n) (mod n) where phi(n) = A000010(n).

Original entry on oeis.org

0, 1, 2, 2, 4, 1, 6, 4, 6, 3, 10, 2, 12, 5, 7, 8, 16, 3, 18, 6, 11, 9, 22, 4, 20, 11, 18, 10, 28, 29, 30, 16, 19, 15, 23, 6, 36, 17, 23, 12, 40, 1, 42, 18, 21, 21, 46, 8, 42, 15, 31, 22, 52, 9, 39, 20, 35, 27, 58, 58, 60, 29, 33, 32, 47, 5, 66, 30, 43, 11, 70, 12, 72, 35, 35, 34, 59, 7, 78, 24, 54, 39, 82, 2, 63, 41, 55, 36, 88, 87, 71, 42, 59, 45, 71, 16, 96, 35, 57, 30
Offset: 1

Views

Author

Jonathan Sondow and Emmanuel Tsukerman, Jan 03 2014

Keywords

Comments

a(n) = n-1 if and only if n is prime or is a Giuga number A007850.
a(n) = 1 if (and probably only if) n is a primary pseudoperfect number A054377.
a(2^k*p) = 2^(k-1)*p-2^k if p is an odd prime. - Robert Israel, Apr 25 2017

Examples

			a(4) = 30 (mod 4) = 2 since 1^(phi(4)) + 2^(phi(4)) + 3^(phi(4)) + 4^(phi(4))= 1^2 + 2^2 + 3^2 + 4^2 = 1 + 4 + 9 + 16 = 30.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local q; q:= numtheory:-phi(n);
       add(k&^q, k=1..n) mod n
    end proc:
    map(f, [$1..100]); # Robert Israel, Apr 25 2017
  • Mathematica
    a[n_] := Mod[Sum[PowerMod[i, EulerPhi@n, n], {i, n}], n]
  • PARI
    a(n)=my(p=eulerphi(n));sum(k=1,n,k^p) \\ Charles R Greathouse IV, Jan 04 2014

Formula

a(n) = A235137(n) (mod n).
Conjecture : a(n) = Sum_{d|n} phi(n/d)*d^phi(n) (mod n). - Ridouane Oudra, Feb 17 2024

A326691 a(n) = n/denominator(Sum_{prime p | n} 1/p - 1/n).

Original entry on oeis.org

1, 2, 3, 1, 5, 2, 7, 1, 1, 2, 11, 3, 13, 2, 1, 1, 17, 2, 19, 1, 3, 2, 23, 1, 1, 2, 1, 1, 29, 30, 31, 1, 1, 2, 1, 1, 37, 2, 3, 1, 41, 2, 43, 1, 1, 2, 47, 3, 1, 2, 1, 1, 53, 2, 5, 7, 3, 2, 59, 1, 61, 2, 1, 1, 1, 6, 67, 1, 1, 2, 71, 1, 73, 2, 3, 1, 1, 2, 79
Offset: 1

Views

Author

Jonathan Sondow, Jul 20 2019

Keywords

Comments

Denominator(Sum_{prime p | n} 1/p - 1/n) is a factor of n, since all primes in the sum divide n. So a(n) is an integer.

Examples

			a(18) = 18/denominator(Sum_{prime p | 18} 1/p - 1/18) = 18/denominator(1/2 + 1/3 - 1/18) = 18/denominator(7/9) = 18/9 = 2.
a(30) = 30/denominator(Sum_{prime p | 30} 1/p - 1/30) = 30/denominator(1/2 + 1/3 + 1/5 - 1/30) = 30/denominator(1/1) = 30/1 = 30, and 30 is a Giuga number.
		

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_] := Select[Divisors[n], PrimeQ];
    f[n_] := Denominator[Sum[1/p, {p, PrimeFactors[n]}] - 1/n];
    Table[n/f[n], {n, 79}]
  • PARI
    A326691(n) = (n/A326690(n)); \\ Antti Karttunen, Mar 15 2021

Formula

a(n) = n/A326690(n).
a(n) = n > 1 iff n is either a prime or a Giuga number A007850.
a(n) = gcd(n, 1+((n-1)*A003415(n))). [Conjectured, after an empirical formula found by LODA miner. This holds at least up to n=2^27] - Antti Karttunen, Mar 15 2021
Previous Showing 21-30 of 52 results. Next