cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A013499 a(n) = 2*n^n, n >= 2, otherwise a(n) = 1.

Original entry on oeis.org

1, 1, 8, 54, 512, 6250, 93312, 1647086, 33554432, 774840978, 20000000000, 570623341222, 17832200896512, 605750213184506, 22224013651116032, 875787780761718750, 36893488147419103232, 1654480523772673528354
Offset: 0

Views

Author

Keywords

Comments

For n>=1, a(n) gives the number of alternating plane trees (trees such that the son of each vertex is ordered) on the set of vertices {1,2,..,n+1} (Chauve et al.). See A007889 for the non-ordered case. - Peter Bala, Aug 30 2011

Crossrefs

Cf. A007889.

Programs

Formula

For n>1, resultant of x^n+1 and n(x-1). - Ralf Stephan, Nov 20 2004

Extensions

Name edited by Michel Marcus, Jul 26 2017

A372236 E.g.f. A(x) satisfies A(x) = exp( x * (1 + A(x)^(1/2)) ).

Original entry on oeis.org

1, 2, 6, 26, 152, 1132, 10300, 111064, 1387104, 19713104, 314350064, 5560881328, 108110428288, 2291750937088, 52618613073408, 1301031907140608, 34470409922547200, 974354631630161152, 29270099764874881792, 931275451933870415104, 31285710787985504633856
Offset: 0

Views

Author

Seiichi Manyama, Apr 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-2*lambertw(-x/2*exp(x/2)))))
    
  • PARI
    a(n, r=1, t=0, u=1/2) = r*sum(k=0, n, (t*n+u*k+r)^(n-1)*binomial(n, k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (k/2+1)^(k-1)*x^k/(1-(k/2+1)*x)^(k+1)))

Formula

E.g.f.: A(x) = exp( x - 2*LambertW(-x/2 * exp(x/2)) ).
If e.g.f. satisfies A(x) = exp( r*x*A(x)^(t/r) * (1 + A(x)^(u/r)) ), then a(n) = r * Sum_{k=0..n} (t*n+u*k+r)^(n-1) * binomial(n,k).
G.f.: Sum_{k>=0} (k/2+1)^(k-1) * x^k/(1 - (k/2+1)*x)^(k+1).
a(n) ~ sqrt(1 + LambertW(exp(-1))) * n^(n-1) / (2^(n-1) * exp(n) * LambertW(exp(-1))^(n+2)). - Vaclav Kotesovec, Apr 24 2024

A029847 Gessel-Stanley triangle read by rows: triangle of coefficients of polynomials arising in connection with enumeration of intransitive trees by number of nodes and number of right nodes.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 1, 17, 17, 1, 1, 49, 146, 49, 1, 1, 129, 922, 922, 129, 1, 1, 321, 4887, 11234, 4887, 321, 1, 1, 769, 23151, 106439, 106439, 23151, 769, 1, 1, 1793, 101488, 856031, 1679494, 856031, 101488, 1793, 1, 1, 4097, 420512, 6137832, 21442606, 21442606, 6137832, 420512, 4097, 1
Offset: 0

Views

Author

Keywords

Comments

For precise definition see Knuth (1997).
Named after the American mathematicians Ira Martin Gessel (b. 1951) and Richard Peter Stanley (b. 1944). - Amiram Eldar, Jun 11 2021

Examples

			Triangle begins:
  1;
  .   1;
  .   1,   1;
  .   1,   5,   1;
  .   1,  17,  17,   1;
  .   1,  49, 146,  49,   1;
  .   1, 129, 922, 922, 129, 1;
  .   ...
		

Crossrefs

Row sums give A007889.

Programs

  • Maple
    f:= proc(n,k) option remember; `if`(k<0, 0, `if`(n=0
          and k=0, 1, f(n-1,k-1)+add(add(binomial(n-1, l)
          *s*f(l,s)*f(n-l-1,k-s), s=1..l), l=1..n-1)))
        end:
    seq(seq(f(n, k), k=min(n, 1)..n), n=0..10); # Alois P. Heinz, Sep 24 2019
  • Mathematica
    f[n_, k_] := f[n, k] = If[k<0, 0, If[n==0 && k==0, 1, f[n-1, k-1]+Sum[Sum[ Binomial[n-1, l]*s*f[l, s]*f[n-l-1, k-s], {s, 1, l}], {l, 1, n-1}]]];
    Table[Table[f[n, k], {k, Min[n, 1], n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 14 2021, after Alois P. Heinz *)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 23 2003

A283828 Number of bounded regions in the Linial arrangement L_{n-1}.

Original entry on oeis.org

0, 0, 1, 4, 26, 212, 2108, 24720, 334072, 5112544, 87396728, 1650607040, 34132685120, 767025716736, 18612106195456, 485013257865472, 13509071081429888, 400505695457942528, 12592502771190979712, 418524228123134068224, 14661145374751901317888
Offset: 1

Views

Author

N. J. A. Sloane, Mar 19 2017

Keywords

Comments

Except for the initial 0, these are the absolute values of A349719. - Ira M. Gessel, Nov 01 2023

Crossrefs

Formula

From Ira M. Gessel, Nov 01 2023: (Start)
a(n) = (1/2^n) * Sum_{k=0..n} (k-1)^(n-1) * binomial(n,k) for n>=2.
In the following generating functions we take a(1)=1 rather than a(1)=0.
E.g.f.: 1 + (1/2)*x/LambertW(-(1/2)*x*exp(x/2)).
E.g.f.: 1-1/B(x), where B(x) is the e.g.f. of A007889. See Corollary 4.2 of Stanley's paper. (End)
a(n) ~ sqrt(1 + LambertW(exp(-1))) * n^(n-1) / (exp(n) * 2^n * LambertW(exp(-1))^(n-1)). - Vaclav Kotesovec, Nov 13 2023

Extensions

More terms from Ira M. Gessel, Nov 01 2023

A125033 Number of labeled nodes in generation n of a rooted tree where a node with label k has k child nodes with distinct labels, such that each child node is assigned the least unused label in the path that leads back to the root node with label '1'.

Original entry on oeis.org

1, 1, 2, 7, 36, 248, 2157, 22761, 283220, 4068411, 66367834, 1213504295, 24606397802
Offset: 0

Views

Author

Paul D. Hanna and R. J. Mathar, Nov 17 2006

Keywords

Comments

The minimum label in generation n is n+1 and the maximum label is n*(n+1)/2 + 1.
Compare to trees A029768, A007889, which seem somewhat similar; A029768 has the additional constraint that the labels must be increasing.

Examples

			Labels for the initial nodes of the tree for generations 0..4:
gen 0: [1];
gen 1: (1)->[2];
gen 2: (2)->[3,4];
gen 3: (3)->[4,5,6], (4)->[3,5,6,7];
gen 4: (4)->[5,6,7,8], (5)->[4,6,7,8,9], (6)->[4,5,7,8,9,10],
(3)->[5,6,7], (5)->[3,6,7,8,9], (6)->[3,5,7,8,9,10],
(7)->[3,5,6,8,9,10,11];
		

Programs

  • Maple
    gen := proc(parents,maxgen,ocounts,lvl)
    local thislbl,lbl,childlbl,counts,npar;
    counts := ocounts;
    counts[lvl] := counts[lvl]+1;
    if nops(parents) < maxgen then
    thislbl := op(-1,parents);
    childlbl := 1;
    for lbl from 1 to thislbl do
    while ( childlbl in parents ) or ( childlbl = thislbl ) do
    childlbl := childlbl+1;
    od;
    npar := [op(parents),childlbl];
    if nops(counts) < lvl+1 then
    counts := [op(counts),0];
    fi;
    counts := gen(npar,maxgen,counts,lvl+1);
    childlbl := childlbl+1;
    od;
    fi;
    if lvl <= maxgen -4 then
    print(counts);
    fi;
    RETURN(counts);
    end:
    maxgen := 8;
    parents := [1,2];
    n := [1,0];
    gen(parents,maxgen,n,2);
    print(%) ; # R. J. Mathar, Nov 17 2006)
    The following Maple10 code is from Alec Mihailovs: # (start)
    f:=proc(n::integer[4],A::Array(datatype=integer[4]),
    B::Array(datatype=integer[4]))::integer[4]; local c::integer[4],
    i::integer[4],len::integer[4],m::integer[4]; c,len,m:=0,3,3;
    while len>1 do if len=n then c:=c+1;m:=A[len];B[m]:=0;len:=len-1;
    B[A[len]]:=B[A[len]]+1 elif B[A[len]]<=A[len] then for i from m+1
    do if B[i]=0 then break fi od; len:=len+1;A[len]:=i;B[i]:=1;m:=2
    else m:=A[len];B[m]:=0;len:=len-1;B[A[len]]:=B[A[len]]+1 fi od; c end:
    cf:=Compiler:-Compile(f):
    F:=proc(n::posint) local A,B;
    if n<3 then 1 elif n=3 then 2 else
    A:=Array([$1..3,0$(n-3)],datatype=integer[4]);
    B:=Array([1$3,0$((n-2)*(n+1)/2)],datatype=integer[4]);
    cf(n,A,B) fi end:
    seq(F(n),n=1..12); # (end)

Extensions

Terms a(6)-a(10) from R. J. Mathar, Nov 17 2006
a(11) and a(12) from Alec Mihailovs (alec(AT)mihailovs.com), Nov 19 2006

A140983 E.g.f. is reversion of (2(1+x)log(1+x)+x^2+2x)/( (2+x)^2(1+x) ).

Original entry on oeis.org

1, 3, 17, 145, 1663, 24031, 419521, 8592417, 202069759, 5367258479, 158934860321, 5191969220945, 185490468312767, 7194912503747775, 301130097048242561, 13526711564792340289, 649121580063333263359, 33142745983169890692559
Offset: 1

Views

Author

Brian Drake, Jul 28 2008

Keywords

Comments

a(n) is the number of labeled incomplete ternary trees on n vertices in which each left or middle child has a larger label than its parent and each right child has a smaller label than its parent. For example, a(2)=3 because we have 2L1, 2M1 and 1R2. Here aLb means a is a left child of b, etc.

Crossrefs

Cf. A007889.

Programs

  • Maple
    N:= 8: exp(RootOf(2*_Z*exp(_Z)-x*exp(_Z)-2*x*exp(_Z)^2-x*exp(_Z)^3 -1 +exp(_Z)^2))-1: series(%, x, N+1): convert(%, polynom): seq( i!*coeff(%, x, i), i=1..N);

A371524 E.g.f. A(x) satisfies A(x) = exp( 2 * x * (1 + A(x)^(1/4)) ).

Original entry on oeis.org

1, 4, 20, 124, 936, 8424, 88648, 1072432, 14702720, 225692128, 3839770656, 71780577312, 1463532416320, 32337850727680, 770039603953664, 19664621381714944, 536234348295180288, 15554459021934423552, 478297493455731968512, 15543431292269887979008
Offset: 0

Views

Author

Seiichi Manyama, Apr 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(2*x-4*lambertw(-x/2*exp(x/2)))))
    
  • PARI
    a(n, r=2, t=0, u=1/2) = r*sum(k=0, n, (t*n+u*k+r)^(n-1)*binomial(n, k));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(2*sum(k=0, N, (k/2+2)^(k-1)*x^k/(1-(k/2+2)*x)^(k+1)))

Formula

E.g.f.: A(x) = exp( 2*x - 4*LambertW(-x/2 * exp(x/2)) ).
If e.g.f. satisfies A(x) = exp( r*x*A(x)^(t/r) * (1 + A(x)^(u/r)) ), then a(n) = r * Sum_{k=0..n} (t*n+u*k+r)^(n-1) * binomial(n,k).
G.f.: 2 * Sum_{k>=0} (k/2+2)^(k-1) * x^k/(1 - (k/2+2)*x)^(k+1).
a(n) ~ sqrt(LambertW(exp(-1)) + 1) * n^(n-1) / (2^(n-2) * exp(n) * LambertW(exp(-1))^(n+4)). - Vaclav Kotesovec, Apr 24 2024
Previous Showing 11-17 of 17 results.