A090212
Alternating row sums of array A078741 ((3,3)-Stirling2).
Original entry on oeis.org
1, -4, 73, -3241, 223546, -10884061, -5437091357, 4560715140638, -2741631069546683, 1315509914960956853, -135771066929217673256, -969783690708328561039261, 1943740128890758048004419957, -2140191682145533094039398047820
Offset: 1
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
-
a[n_] := -Sum[(-1)^k FactorialPower[k, 3]^n/k!, {k, 2, Infinity}]*E; Array[a, 14] (* Jean-François Alcover, Sep 01 2016 *)
A090213
Alternating row sums of array A090214 ((4,4)-Stirling2).
Original entry on oeis.org
1, -15, 1169, -154079, -148969375, 778633335441, -4003896394897551, 27901641934428560705, -268555885416357907647039, 3460225909437698652973995569, -56404253763542830420650221273263, 1050004356721541004548911018674177377
Offset: 1
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
-
a[n_] := Sum[(-1)^k FactorialPower[k, 4]^n/k!, {k, 2, Infinity}]*E; Array[a, 12] (* Jean-François Alcover, Sep 01 2016 *)
A090218
Alternating row sums of array A090216 (generalized Stirling2 array S_{5,5}(n,m)).
Original entry on oeis.org
1, -56, -29809, 326279119, -2175016082574, -74839638000014951, 12021284427301302745281, -1570241381612307786517290066, 198470943846200888426002717105781, 5344440525443920698933785031734661899, -41721146701452069718231186424275967809608724
Offset: 1
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
A091553
Third column (k=6) sequence of array A090214 ((4,4)-Stirling2) divided by 72.
Original entry on oeis.org
1, 704, 300096, 113762304, 41644855296, 15075073327104, 5436979231850496, 1958506906364411904, 705205813266345885696, 253891292037560301256704, 91402929045514567230160896, 32905302125838589613523861504
Offset: 0
Cf.
A089518 (third column of array (3, 3)-Stirling2 divided by 9).
A093908
Let f(k, n) be the product of n consecutive numbers beginning with k. Then a(n) is the least k > 1+n*(n-1)/2 such that f(k, n) is a multiple of f(1+n*(n-1)/2, n).
Original entry on oeis.org
2, 3, 8, 39, 52, 187, 204, 863, 773, 6621, 34038, 2404, 34440, 223097, 11976, 1106290, 1980047, 85119892, 15308072, 496820597, 2590416388, 1087065675, 4736428784, 1128909067, 242793786666, 2791304683100, 273924845940
Offset: 1
a(4) = 39 because 39*40*41*42 is divisible by 7*8*9*10. No
smaller set gives a product that is a multiple of 7*8*9*10.
A258213
Number of permutations of {1,2,3,...,n} such that no even numbers are adjacent.
Original entry on oeis.org
1, 1, 2, 6, 12, 72, 144, 1440, 2880, 43200, 86400, 1814400, 3628800, 101606400, 203212800, 7315660800, 14631321600, 658409472000, 1316818944000, 72425041920000, 144850083840000, 9560105533440000, 19120211066880000, 1491376463216640000, 2982752926433280000
Offset: 0
-
a:= n-> (m-> m!^2*(m+1))(iquo(n+1, 2, 'r'))/(2-r):
seq(a(n), n=0..24); # Alois P. Heinz, Feb 14 2024
-
T(n,k) = n!/(n-k)!; \\ A008279
a(n) = ceil(n/2)!*T(ceil(n/2)+1, n\2); \\ Michel Marcus, Nov 24 2022
A316773
Triangle read by rows: T(n,m) = Sum_{k=m+1..n} (n-1)!/(k-1)!*binomial(2*n-k-1, n-1)*E(k,m) where E(n,m) is Euler's triangle A173018, T(0,0) = 1, n >= m >= 0.
Original entry on oeis.org
1, 1, 0, 3, 1, 0, 19, 10, 1, 0, 193, 119, 23, 1, 0, 2721, 1806, 466, 46, 1, 0, 49171, 34017, 10262, 1502, 87, 1, 0, 1084483, 770274, 255795, 47020, 4425, 162, 1, 0, 28245729, 20429551, 7235853, 1539939, 193699, 12525, 303, 1, 0, 848456353, 621858526, 230629024, 54314242, 8273758, 755170, 34912, 574, 1, 0
Offset: 0
Triangle begins:
--------------------------------------------------------------------------
n\k| 0 1 2 3 4 5 6 7 8 9
------+-------------------------------------------------------------------
0 | 1
1 | 1 0
2 | 3 1 0
3 | 19 10 1 0
4 | 193 119 23 1 0
5 | 2721 1806 466 46 1 0
6 | 49171 34017 10262 1502 87 1 0
7 | 1084483 770274 255795 47020 4425 162 1 0
8 | 28245729 20429551 7235853 1539939 193699 12525 303 1 0
9 | 848456353 621858526 230629024 54314242 8273758 755170 34912 574 1 0
-
T := (n,m) -> `if`(n=0, 1, add((n-1)!/(k-1)!*binomial(2*n-k-1, n-1)*
combinat:-eulerian1(k, m), k = m+1..n)):
for n from 0 to 6 do seq(T(n, k), k=0..n) od; # Peter Luschny, Sep 04 2020
-
Table[Boole[n == 0] + Sum[(n - 1)!/(k - 1)!*Binomial[2 n - k - 1, n - 1]*Sum[(-1)^j*(m + 1 - j)^k*Binomial[k + 1, j], {j, 0, m}], {k, m + 1, n}], {n, 0, 8}, {m, 0, n}] // Flatten (* Michael De Vlieger, Sep 04 2020 *)
-
T(n,m):=if m>n then 0 else if n=0 then 1 else sum((n-1)!/(k-1)!*binomial(2*n-k-1,n-1)*sum((-1)^j*(m+1-j)^k*binomial(k+1,j),j,0,m),k,m+1,n);
A344391
T(n, k) = binomial(n - k, k) * factorial(k), for n >= 0 and 0 <= k <= floor(n/2). Triangle read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 4, 6, 1, 5, 12, 6, 1, 6, 20, 24, 1, 7, 30, 60, 24, 1, 8, 42, 120, 120, 1, 9, 56, 210, 360, 120, 1, 10, 72, 336, 840, 720, 1, 11, 90, 504, 1680, 2520, 720, 1, 12, 110, 720, 3024, 6720, 5040, 1, 13, 132, 990, 5040, 15120, 20160, 5040
Offset: 0
[ 0] [1]
[ 1] [1]
[ 2] [1, 1]
[ 3] [1, 2]
[ 4] [1, 3, 2]
[ 5] [1, 4, 6]
[ 6] [1, 5, 12, 6]
[ 7] [1, 6, 20, 24]
[ 8] [1, 7, 30, 60, 24]
[ 9] [1, 8, 42, 120, 120]
[10] [1, 9, 56, 210, 360, 120]
[11] [1, 10, 72, 336, 840, 720]
-
T := (n, k) -> pochhammer(n + 1 - 2*k, k):
seq(print(seq(T(n, k), k=0..n/2)), n = 0..11);
-
def T(n, k): return rising_factorial(n + 1 - 2*k, k)
def T(n, k): return (-1)^k*falling_factorial(2*k - n - 1, k)
def T(n, k): return binomial(n - k, k) * factorial(k)
print(flatten([[T(n, k) for k in (0..n//2)] for n in (0..11)]))
A365638
Triangular array read by rows: T(n, k) is the number of ways that a k-element transitive tournament can occur as a subtournament of a larger tournament on n labeled vertices.
Original entry on oeis.org
1, 1, 1, 2, 4, 2, 8, 24, 24, 6, 64, 256, 384, 192, 24, 1024, 5120, 10240, 7680, 1920, 120, 32768, 196608, 491520, 491520, 184320, 23040, 720, 2097152, 14680064, 44040192, 55050240, 27525120, 5160960, 322560, 5040, 268435456, 2147483648, 7516192768, 11274289152, 7046430720, 1761607680, 165150720, 5160960, 40320
Offset: 0
Triangle begins:
1
1, 1
2, 4, 2
8, 24, 24, 6
64, 256, 384, 192, 24
1024, 5120, 10240, 7680, 1920, 120
-
T := (n, k) -> 2^(((n-1)*n - (k-1)*k)/2) * n! / (n-k)!:
seq(seq(T(n, k), k = 0..n), n = 0..8); # Peter Luschny, Nov 02 2023
-
T(n, k) = binomial(n, k)*k!*2^(binomial(n, 2) - binomial(k, 2))
A091739
Third column (k=7) sequence of array A090216 ((5,5)-Stirling2) divided by 600.
Original entry on oeis.org
1, 4440, 12715200, 33158592000, 84365452800000, 213181366579200000, 537634980016128000000, 1355141067314135040000000, 3415172150786516582400000000, 8606389816065144913920000000000
Offset: 0
Cf.
A091553 (third column of array (4, 4)-Stirling2 divided by 72).
Comments