cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 117 results. Next

A090212 Alternating row sums of array A078741 ((3,3)-Stirling2).

Original entry on oeis.org

1, -4, 73, -3241, 223546, -10884061, -5437091357, 4560715140638, -2741631069546683, 1315509914960956853, -135771066929217673256, -969783690708328561039261, 1943740128890758048004419957, -2140191682145533094039398047820
Offset: 1

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Cf. A000587, A090211. A069223 (non-alternating sum, generalized Bell-numbers).

Programs

  • Mathematica
    a[n_] := -Sum[(-1)^k FactorialPower[k, 3]^n/k!, {k, 2, Infinity}]*E; Array[a, 14] (* Jean-François Alcover, Sep 01 2016 *)

Formula

a(n) := sum( A078741(n, k)*(-1)^(k+1), k=3..3*n), n>=1. a(0) := -1 may be added.
a(n) = -sum(((-1)^k)*(fallfac(k, 3)^n)/k!, k=3..infinity)*exp(1), with fallfac(k, 3)=A008279(k, 3)=k*(k-1)*(k-2) and n>=1. This produces also a(0)=-1.
E.g.f. if a(0)=-1 is added: -exp(1)*(sum(((-1)^k)*exp(fallfac(k, 3)*x)/k!, k=3..infinity)+1/2). Similar to derivation on top of p. 4656 of the Schork reference.

A090213 Alternating row sums of array A090214 ((4,4)-Stirling2).

Original entry on oeis.org

1, -15, 1169, -154079, -148969375, 778633335441, -4003896394897551, 27901641934428560705, -268555885416357907647039, 3460225909437698652973995569, -56404253763542830420650221273263, 1050004356721541004548911018674177377
Offset: 1

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Cf. A000587, A090211-2. A071379 (non-alternating sum, generalized Bell-numbers).

Programs

  • Mathematica
    a[n_] := Sum[(-1)^k FactorialPower[k, 4]^n/k!, {k, 2, Infinity}]*E; Array[a, 12] (* Jean-François Alcover, Sep 01 2016 *)

Formula

a(n) := sum( A090214(n, k)*(-1)^k, k=4..4*n), n>=1. a(0) := 1 may be added.
a(n) = sum(((-1)^k)*(fallfac(k, 4)^n)/k!, k=4..infinity)*exp(1), with fallfac(k, 4)=A008279(k, 4)=k*(k-1)*(k-2)*(k-3) and n>=1. This produces also a(0)=1.
E.g.f. if a(0)=1 is added: exp(1)*(sum(((-1)^k)*exp(fallfac(k, 4)*x)/k!, k=4..infinity) + A000166(3)/3!). with the subfactorials A000166. A000166(3)/3!=1/3. Similar to derivation on top of p. 4656 of the Schork reference.

A090218 Alternating row sums of array A090216 (generalized Stirling2 array S_{5,5}(n,m)).

Original entry on oeis.org

1, -56, -29809, 326279119, -2175016082574, -74839638000014951, 12021284427301302745281, -1570241381612307786517290066, 198470943846200888426002717105781, 5344440525443920698933785031734661899, -41721146701452069718231186424275967809608724
Offset: 1

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

References

  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Formula

a(n) = -sum(((-1)^k)*(fallfac(k, 5)^n)/k!, k=5..infinity)*exp(1), with fallfac(k, 5)=A008279(k, 5)=product(k+1-r, r=1..5) and n>=1. This produces also a(0)=-1.
E.g.f. if a(0)=-1 is added: -exp(1)*(sum(((-1)^k)*exp(fallfac(k, 5)*x)/k!, k=5..infinity) + 3/8). 3/8=A000166(4)/4! with the subfactorials A000166. Similar to the derivation on top of p. 4656 of the Schork reference.

A091553 Third column (k=6) sequence of array A090214 ((4,4)-Stirling2) divided by 72.

Original entry on oeis.org

1, 704, 300096, 113762304, 41644855296, 15075073327104, 5436979231850496, 1958506906364411904, 705205813266345885696, 253891292037560301256704, 91402929045514567230160896, 32905302125838589613523861504
Offset: 0

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Crossrefs

Cf. A089518 (third column of array (3, 3)-Stirling2 divided by 9).

Formula

a(n)= A090214(n+2, 6)/72, n>=0.
a(n)= (15*(6*5*4*3)^n - 10*(5*4*3*2)^n + (4*3*2*1)^n)/3!.
G.f.: (1+200*x)/product(1-fallfac(p, 4)*x, p=4..6), with fallfac(n, m) := A008279(n, m) (falling factorials).
a(n)= ((4!)^n)*(1-2*5^(n+1)+binomial(6, 2)^(n+1))/3!. From eq.12 of the Blasiak et al. reference given in A078740 with r=4=s, k=6.

A093908 Let f(k, n) be the product of n consecutive numbers beginning with k. Then a(n) is the least k > 1+n*(n-1)/2 such that f(k, n) is a multiple of f(1+n*(n-1)/2, n).

Original entry on oeis.org

2, 3, 8, 39, 52, 187, 204, 863, 773, 6621, 34038, 2404, 34440, 223097, 11976, 1106290, 1980047, 85119892, 15308072, 496820597, 2590416388, 1087065675, 4736428784, 1128909067, 242793786666, 2791304683100, 273924845940
Offset: 1

Views

Author

Amarnath Murthy, Apr 24 2004

Keywords

Comments

f(k, n) = A008279(n+k-1, n). 1+n*(n-1)/2 = A000124(n-1). f(1+n*(n-1)/2, n) = A057003(n).
a(28) > 88*10^12.

Examples

			a(4) = 39 because 39*40*41*42 is divisible by 7*8*9*10. No
smaller set gives a product that is a multiple of 7*8*9*10.
		

Crossrefs

Extensions

Edited and extended by David Wasserman, Apr 25 2007

A258213 Number of permutations of {1,2,3,...,n} such that no even numbers are adjacent.

Original entry on oeis.org

1, 1, 2, 6, 12, 72, 144, 1440, 2880, 43200, 86400, 1814400, 3628800, 101606400, 203212800, 7315660800, 14631321600, 658409472000, 1316818944000, 72425041920000, 144850083840000, 9560105533440000, 19120211066880000, 1491376463216640000, 2982752926433280000
Offset: 0

Views

Author

Ran Pan, May 23 2015

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (m-> m!^2*(m+1))(iquo(n+1, 2, 'r'))/(2-r):
    seq(a(n), n=0..24);  # Alois P. Heinz, Feb 14 2024
  • PARI
    T(n,k) = n!/(n-k)!; \\ A008279
    a(n) = ceil(n/2)!*T(ceil(n/2)+1, n\2); \\ Michel Marcus, Nov 24 2022

Formula

a(n) = factorial(ceiling(n/2))*fallfac(ceiling(n/2)+1, floor(n/2)), with fallfac = A008279.
a(2n) = A010790(n), a(2n-1) = A010790(n)/2.
D-finite with recurrence: (4*(n-2)^2 + 24*n - 80)*a(n) + (16*n+24)*a(n-1) - (n+2)*n*((n-2)^2 + 8*n - 17)*a(n-2) = 0. - Georg Fischer, Nov 23 2022

A316773 Triangle read by rows: T(n,m) = Sum_{k=m+1..n} (n-1)!/(k-1)!*binomial(2*n-k-1, n-1)*E(k,m) where E(n,m) is Euler's triangle A173018, T(0,0) = 1, n >= m >= 0.

Original entry on oeis.org

1, 1, 0, 3, 1, 0, 19, 10, 1, 0, 193, 119, 23, 1, 0, 2721, 1806, 466, 46, 1, 0, 49171, 34017, 10262, 1502, 87, 1, 0, 1084483, 770274, 255795, 47020, 4425, 162, 1, 0, 28245729, 20429551, 7235853, 1539939, 193699, 12525, 303, 1, 0, 848456353, 621858526, 230629024, 54314242, 8273758, 755170, 34912, 574, 1, 0
Offset: 0

Views

Author

Yuriy Shablya, Sep 13 2018

Keywords

Comments

T(n,m) is the number of labeled binary trees of size n with m ascents on the left branch.

Examples

			Triangle begins:
--------------------------------------------------------------------------
n\k|       0         1         2        3       4      5     6   7   8   9
------+-------------------------------------------------------------------
0 |         1
1 |         1         0
2 |         3         1         0
3 |        19        10         1        0
4 |       193       119        23        1       0
5 |      2721      1806       466       46       1      0
6 |     49171     34017     10262     1502      87      1     0
7 |   1084483    770274    255795    47020    4425    162     1   0
8 |  28245729  20429551   7235853  1539939  193699  12525   303   1  0
9 | 848456353 621858526 230629024 54314242 8273758 755170 34912 574  1  0
		

Crossrefs

Programs

  • Maple
    T := (n,m) -> `if`(n=0, 1, add((n-1)!/(k-1)!*binomial(2*n-k-1, n-1)*
    combinat:-eulerian1(k, m), k = m+1..n)):
    for n from 0 to 6 do seq(T(n, k), k=0..n) od; # Peter Luschny, Sep 04 2020
  • Mathematica
    Table[Boole[n == 0] + Sum[(n - 1)!/(k - 1)!*Binomial[2 n - k - 1, n - 1]*Sum[(-1)^j*(m + 1 - j)^k*Binomial[k + 1, j], {j, 0, m}], {k, m + 1, n}], {n, 0, 8}, {m, 0, n}] // Flatten (* Michael De Vlieger, Sep 04 2020 *)
  • Maxima
    T(n,m):=if m>n then 0 else if n=0 then 1 else sum((n-1)!/(k-1)!*binomial(2*n-k-1,n-1)*sum((-1)^j*(m+1-j)^k*binomial(k+1,j),j,0,m),k,m+1,n);

Formula

E.g.f.: Sum_{n >= m >= 0} T(n, m)/n! * x^n * y^m = E(C(x),y) = (y-1)/(y-exp(C(x)*(y-1))), where E(x,y) is an e.g.f. for Euler's triangle A173018.
T(n,m) = Sum_{k = m+1..n} C(n,k)*E(k,m)*P(n,n-k), T(0,0)=1, where C(n,m) is the transposed Catalan's triangle A033184, E(n,m) is Euler's triangle A173018, and P(n,m) is the number of k-permutations of n A008279.

A344391 T(n, k) = binomial(n - k, k) * factorial(k), for n >= 0 and 0 <= k <= floor(n/2). Triangle read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 4, 6, 1, 5, 12, 6, 1, 6, 20, 24, 1, 7, 30, 60, 24, 1, 8, 42, 120, 120, 1, 9, 56, 210, 360, 120, 1, 10, 72, 336, 840, 720, 1, 11, 90, 504, 1680, 2520, 720, 1, 12, 110, 720, 3024, 6720, 5040, 1, 13, 132, 990, 5040, 15120, 20160, 5040
Offset: 0

Views

Author

Peter Luschny, May 17 2021

Keywords

Comments

The antidiagonal representation of the falling factorials (A008279).

Examples

			[ 0] [1]
[ 1] [1]
[ 2] [1,  1]
[ 3] [1,  2]
[ 4] [1,  3,  2]
[ 5] [1,  4,  6]
[ 6] [1,  5, 12,   6]
[ 7] [1,  6, 20,  24]
[ 8] [1,  7, 30,  60,  24]
[ 9] [1,  8, 42, 120, 120]
[10] [1,  9, 56, 210, 360, 120]
[11] [1, 10, 72, 336, 840, 720]
		

Crossrefs

Cf. A122852 (row sums).

Programs

  • Maple
    T := (n, k) -> pochhammer(n + 1 - 2*k, k):
    seq(print(seq(T(n, k), k=0..n/2)), n = 0..11);
  • Sage
    def T(n, k): return rising_factorial(n + 1 - 2*k, k)
    def T(n, k): return (-1)^k*falling_factorial(2*k - n - 1, k)
    def T(n, k): return binomial(n - k, k) * factorial(k)
    print(flatten([[T(n, k) for k in (0..n//2)] for n in (0..11)]))

Formula

T(n, k) = RisingFactorial(n + 1 - 2*k, k).
T(n, k) = (-1)^k*FallingFactorial(2*k - n - 1, k).

A365638 Triangular array read by rows: T(n, k) is the number of ways that a k-element transitive tournament can occur as a subtournament of a larger tournament on n labeled vertices.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 8, 24, 24, 6, 64, 256, 384, 192, 24, 1024, 5120, 10240, 7680, 1920, 120, 32768, 196608, 491520, 491520, 184320, 23040, 720, 2097152, 14680064, 44040192, 55050240, 27525120, 5160960, 322560, 5040, 268435456, 2147483648, 7516192768, 11274289152, 7046430720, 1761607680, 165150720, 5160960, 40320
Offset: 0

Views

Author

Thomas Scheuerle, Sep 14 2023

Keywords

Comments

A tournament is a directed digraph obtained by assigning a direction for each edge in an undirected complete graph. In a transitive tournament all nodes can be strictly ordered by their reachability.

Examples

			Triangle begins:
     1
     1,     1
     2,     4,     2
     8,    24,    24,     6
    64,   256,   384,   192,    24
  1024,  5120, 10240,  7680,  1920,  120
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> 2^(((n-1)*n - (k-1)*k)/2) * n! / (n-k)!:
    seq(seq(T(n, k), k = 0..n), n = 0..8);  # Peter Luschny, Nov 02 2023
  • PARI
    T(n, k) = binomial(n, k)*k!*2^(binomial(n, 2) - binomial(k, 2))

Formula

T(n, k) = binomial(n, k)*k!*2^(binomial(n, 2) - binomial(k, 2)).
T(n, 0) = A006125(n).
T(n, 1) = A095340(n).
T(n, 2) = A103904(n).
T(n, n) = n!.
T(n, n-1) = A002866(n-1).
T(n, n-2) = A052670(n).
T(n, k) = A008279(n, k) * A117260(n, k). - Peter Luschny, Dec 31 2024

A091739 Third column (k=7) sequence of array A090216 ((5,5)-Stirling2) divided by 600.

Original entry on oeis.org

1, 4440, 12715200, 33158592000, 84365452800000, 213181366579200000, 537634980016128000000, 1355141067314135040000000, 3415172150786516582400000000, 8606389816065144913920000000000
Offset: 0

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Crossrefs

Cf. A091553 (third column of array (4, 4)-Stirling2 divided by 72).

Formula

a(n)= A090216(n+2, 7)/600, n>=0.
a(n)= ((5!)^n)*(1-2*6^(n+1)+binomial(7, 2)^(n+1))/(2*5). From eq.12 of the Blasiak et al. reference given in A007840 with r=5=s, k=7.
a(n)= (21*(7*6*5*4*3)^n - 12*(6*5*4*3*2)^n + (5*4*3*2*1)^n)/10.
G.f.: (1+1080*x)/product(1-fallfac(p, 5)*x, p=5..7), with fallfac(n, m) := A008279(n, m) (falling factorials).
Previous Showing 101-110 of 117 results. Next