A330509
Triangle read by rows: T(n,k) is the number of 4-ary strings of length n with k indispensable digits, with 0 <= k <= n.
Original entry on oeis.org
1, 1, 3, 1, 9, 6, 1, 19, 34, 10, 1, 34, 115, 91, 15, 1, 55, 301, 445, 201, 21, 1, 83, 672, 1582, 1338, 392, 28, 1, 119, 1344, 4600, 6174, 3410, 700, 36, 1, 164, 2478, 11623, 22548, 19784, 7723, 1170, 45, 1, 219, 4290, 26452, 69834, 88428, 55009, 15999, 1857, 55
Offset: 0
Triangle begins
1;
1, 3;
1, 9, 6;
1, 19, 34, 10;
1, 34, 115, 91, 15;
1, 55, 301, 445, 201, 21;
...
There is 1 string (00) of length 2 with 0 indispensable digits.
There are 9 strings (01, 02, 03, 10, 12, 13, 20, 23, 30) of length 2 with 1 indispensable digit.
There are 6 strings (11, 21, 22, 31, 32, 33) of length 2 with 2 indispensable digits.
Hence T(2,0)=1, T(2,1)=9, T(2,2)=6.
-
Table[Total@ Map[Sum[Binomial[n, i] Binomial[n, # - 2 i], {i, 0, #/2}] &, 3 k + {-2, -1, 0}], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 23 2019, after Jean-François Alcover at A008287 *)
-
A008287(n, k) = if(n<0, 0, polcoeff((1 + x + x^2 + x^3)^n, k));
T(n, k) = A008287(n, 3*k-2)+A008287(n, 3*k-1) + A008287(n, 3*k);
A349934
Array read by ascending antidiagonals: A(n, s) is the n-th s-Catalan number.
Original entry on oeis.org
1, 2, 1, 5, 3, 1, 14, 15, 4, 1, 42, 91, 34, 5, 1, 132, 603, 364, 65, 6, 1, 429, 4213, 4269, 1085, 111, 7, 1, 1430, 30537, 52844, 19845, 2666, 175, 8, 1, 4862, 227475, 679172, 383251, 70146, 5719, 260, 9, 1, 16796, 1730787, 8976188, 7687615, 1949156, 204687, 11096, 369, 10, 1
Offset: 1
The array begins:
n\s | 1 2 3 4 5
----+----------------------------
1 | 1 1 1 1 1 ...
2 | 2 3 4 5 6 ...
3 | 5 15 34 65 111 ...
4 | 14 91 364 1085 2666 ...
5 | 42 603 4269 19845 70146 ...
...
-
T[n_,k_,s_]:=If[k==0,1,Coefficient[(Sum[x^i,{i,0,s}])^n,x^k]]; A[n_,s_]:=T[2n,s n,s]-T[2n,s n+1,s]; Flatten[Table[A[n-s+1,s],{n,10},{s,n}]]
-
T(n, k, s) = polcoef((sum(i=0, s, x^i))^n, k);
A(n, s) = T(2*n, s*n, s) - T(2*n, s*n+1, s); \\ Michel Marcus, Dec 10 2021
A177960
Numbers of the form A001317(t), excluding those at places of the form t=m*(2^k-1), m>=0, k>=2.
Original entry on oeis.org
3, 5, 17, 51, 257, 1285, 3855, 13107, 65537, 196611, 983055, 1114129, 5570645, 16711935, 50529027, 84215045, 858993459, 4294967297, 21474836485, 219043332147, 365072220245, 1103806595329, 3311419785987
Offset: 1
A178619
Triangle T(n,k) with the coefficient of [x^k] of the series (1-x)^(n+1)* sum_{j>=0} binomial(n + 4*j, 4*j)*x^j in row n, column k.
Original entry on oeis.org
1, 1, 3, 1, 12, 3, 1, 31, 31, 1, 1, 65, 155, 35, 1, 120, 546, 336, 21, 1, 203, 1554, 1918, 413, 7, 1, 322, 3823, 8092, 3823, 322, 1, 1, 486, 8451, 27876, 23607, 4950, 165, 1, 705, 17205, 82885, 112035, 44803, 4455, 55, 1, 990, 32802, 220198, 440484, 291258
Offset: 0
1;
1, 3;
1, 12, 3;
1, 31, 31, 1;
1, 65, 155, 35;
1, 120, 546, 336, 21;
1, 203, 1554, 1918, 413, 7;
1, 322, 3823, 8092, 3823, 322, 1;
1, 486, 8451, 27876, 23607, 4950, 165;
1, 705, 17205, 82885, 112035, 44803, 4455, 55;
1, 990, 32802, 220198, 440484, 291258, 59950, 2882, 11;
-
A178619 := proc(n,k)
(1-x)^(n+1)*add( binomial(n+4*j,4*j)*x^j,j=0..n+1) ;
coeftayl(%,x=0,k) ;
end proc:
seq(seq(A178619(n,k),k=0..n),n=0..8) ; # R. J. Mathar, Nov 05 2012
-
p[x_, n_] = (-1)^(n + 1)*(-1 + x)^(n + 1)*Sum[Binomial[n + 4*k, 4*k]*x^k, {k, 0, Infinity}]
Flatten[Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]]
A265644
Triangle read by rows: T(n,m) is the number of quaternary words of length n with m strictly increasing runs (0 <= m <= n).
Original entry on oeis.org
1, 0, 4, 0, 6, 10, 0, 4, 40, 20, 0, 1, 65, 155, 35, 0, 0, 56, 456, 456, 56, 0, 0, 28, 728, 2128, 1128, 84, 0, 0, 8, 728, 5328, 7728, 2472, 120, 0, 0, 1, 486, 8451, 27876, 23607, 4950, 165
Offset: 0
Triangle starts:
1;
0, 4;
0, 6, 10;
0, 4, 40, 20;
0, 1, 65, 155, 35;
0, 0, 56, 456, 456, 56;
.
T(3,2) = 40, which accounts for the following words:
[0 <= a <= 0, 1 | 0 <= b <= 1] = 2
[0 <= a <= 1, 2 | 0 <= b <= 2] = 6
[0 <= a <= 2, 3 | 0 <= b <= 3] = 12
[0 <= a <= 3 | 0, 1 <= b <= 3] = 12
[1 <= a <= 3 | 1, 2 <= b <= 3] = 6
[2 <= a <= 3 | 2, 3 <= b <= 3] = 2
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, p. 24, p. 154.
-
T:=(n,m)->_plus((-1)^(m-j)*binomial(n+1, m-j)*binomial(4*j, n)$j=0..m):
-
T(n, k) = sum(j=0, k, (-1)^(k-j)*binomial(n+1, k-j)*binomial(4*j, n));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print()); \\ Michel Marcus, Feb 09 2016
A380899
Three-Catalan Triangle read by rows, for n>=0 and k>=0.
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 9, 11, 10, 6, 3, 1, 34, 90, 120, 120, 96, 64, 35, 15, 5, 1, 364, 1000, 1400, 1505, 1351, 1044, 700, 406, 202, 84, 28, 7, 1, 4269, 11925, 17225, 19425, 18657, 15753, 11845, 7965, 4785, 2553, 1197, 485, 165, 45, 9, 1
Offset: 0
Triangle begins:
1
1 1 1 1
4 9 11 10 6 3 1
34 90 120 120 96 64 35 15 5 1
364 1000 1400 1505 1351 1044 700 406 202 84 28 7 1
...
-
t(n, k) = polcoef((1 + x + x^2 + x^3)^n, k); \\ A008287
T(n, k) = t(2*n, 3*n+k) - t(2*n, 3*n+k+1);
row(n) = vector(3*n+1, k, T(n,k-1));
A005724
Quadrinomial coefficients.
Original entry on oeis.org
3, 40, 546, 7728, 112035, 1650792, 24608948, 370084832, 5603730876, 85316186400, 1304770191802, 20029132137840, 308437355259930, 4762695514958640, 73716196036213800, 1143325208566357440, 17765127399780725316, 276484586847524844768, 4309270265307160983144
Offset: 1
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
seq(coeff((1+x+x^2+x^3)^(2*n),x,3*n-1), n=1..30); # Robert Israel, Aug 15 2016
A340620
T(n,k) is the number of 4-ary strings of length n+1 with k+1 indispensable digits and a nonzero leading digit with 0 <= k <= n.
Original entry on oeis.org
3, 6, 6, 10, 28, 10, 15, 81, 81, 15, 21, 186, 354, 186, 21, 28, 371, 1137, 1137, 371, 28, 36, 672, 3018, 4836, 3018, 672, 36, 45, 1134, 7023, 16374, 16374, 7023, 1134, 45, 55, 1812, 14829, 47286, 68644, 47286, 14829, 1812, 55, 66, 2772, 29043, 121314, 240021, 240021, 121314, 29043, 2772, 66
Offset: 0
Triangle begins
3;
6, 6;
10, 28, 10;
15, 81, 81, 15;
21, 186, 354, 186, 21;
28, 371, 1137, 1137, 371, 28;
36, 672, 3018, 4836, 3018, 672, 36;
...
There are 6 4-ary strings (10, 12, 13, 20, 23, 30) of length 2 with 1 indispensable digits and a nonzero leading digit.
There are 6 4-ary strings (11, 21, 22, 31, 32, 33) of length 2 with 2 indispensable digits and a nonzero leading digit.
There are 10 4-ary strings (111, 211, 221, 222, 311, 321, 322, 331, 332, 333) of length 3 with 3 indispensable digits and a nonzero leading digit.
Hence, T(1,0)=6, T(1,1)=6, T(2,2)=10.
-
A008287(n, k) = if(n<0, 0, polcoeff((1 + x + x^2 + x^3)^n, k));
A330509(n, k) = A008287(n, 3*k-2)+A008287(n, 3*k-1) + A008287(n, 3*k);
T(n, k) = A330509(n+1,k+1) - A330509(n,k+1);
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", "))); \\ Michel Marcus, Jan 19 2021
Comments