A187543
Binomial convolutions of the central Lah numbers (A187535).
Original entry on oeis.org
1, 4, 80, 2832, 144576, 9660480, 798468480, 78670609920, 9002061573120, 1173384611804160, 171641216823552000, 27843893955582566400, 4961007038613633638400, 963075987422089673932800, 202333751987206944654950400
Offset: 0
Cf.
A187536,
A008297,
A111596,
A187536,
A187538,
A187539,
A187540,
A187542,
A187544,
A187545,
A187546,
A187547,
A187548.
-
a := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi;
seq(add(binomial(n,k)*a(k)*a(n-k), k=0..n),n=0..12);
-
a[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
Table[Sum[Binomial[n, k]a[k]a[n - k], {k, 0, n}], {n, 0, 20}]
CoefficientList[Series[(1/2 + EllipticK[16*x]/Pi)^2, {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 06 2019 *)
-
a(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
makelist(sum(binomial(n,k)*a(k)*a(n-k),k,0,n),n,0,12);
A187544
Stirling transform (of the second kind) of the central Lah numbers (A187535).
Original entry on oeis.org
1, 2, 38, 1310, 66254, 4428782, 368444078, 36691056110, 4256199137774, 563672814445742, 83921091641375918, 13875375391723852910, 2522552600160248918894, 500141581330626431059502, 107400097037199576065830958
Offset: 0
Cf.
A187536,
A008297,
A111596,
A187536,
A187538,
A187539,
A187540,
A187542,
A187543,
A187545,
A187546,
A187547,
A187548.
-
a := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi;
seq(sum(combinat[stirling2](n,k)*a(k), k=0..n),n=0..12);
-
a[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
Table[Sum[StirlingS2[n, k]a[k], {k, 0, n}], {n, 0, 20}]
CoefficientList[Series[1/2 + EllipticK[16*(E^x - 1)]/Pi, {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 06 2019 *)
-
a(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
makelist(sum(stirling2(n,k)*a(k),k,0,n),n,0,12);
A187545
Stirling transform (of the first kind) of the central Lah numbers (A187535).
Original entry on oeis.org
1, 2, 38, 1312, 66408, 4442088, 369791064, 36848702784, 4277191653888, 566809715422464, 84441103242634176, 13970100487593468480, 2541362625439551554880, 504185908064687887996800, 108336183242510523080868480
Offset: 0
Cf.
A187536,
A008297,
A111596,
A187536,
A187538,
A187539,
A187540,
A187542,
A187543,
A187544,
A187546,
A187547,
A187548.
-
lahc := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi;
seq(add(abs(combinat[stirling1](n,k))*lahc(k), k=0..n), n=0..20);
-
lahc[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
Table[Sum[Abs[StirlingS1[n, k]]*lahc[k], {k, 0, n}], {n, 0, 20}]
-
lahc(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
makelist(sum(abs(stirling1(n,k))*lahc(k),k,0,n),n,0,12);
A187546
Stirling transform (of the first kind, with signs) of the central Lah numbers (A187535).
Original entry on oeis.org
1, 2, 34, 1096, 51984, 3262488, 254943384, 23853046656, 2600024557248, 323588157732096, 45276442446814656, 7035574740347812800, 1202158966644148296000, 224022356544364922931840, 45215509996613004825121920
Offset: 0
Cf.
A187536,
A008297,
A111596,
A187536,
A187538,
A187539,
A187540,
A187542,
A187543,
A187544,
A187545,
A187547,
A187548.
-
lahc := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi;
seq(add(combinat[stirling1](n,k)*lahc(k), k=0..n), n=0..20);
-
lahc[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
Table[Sum[StirlingS1[n, k]*lahc[k], {k, 0, n}], {n, 0, 20}]
-
lahc(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
makelist(sum(stirling1(n,k)*lahc(k),k,0,n),n,0,12);
A187547
L(n)H(n+1), product of the central Lah number L(n) and the harmonic number H(n).
Original entry on oeis.org
1, 3, 66, 2500, 134260, 9335088, 796938912, 80671795776, 9446603680800, 1256254443100800, 187033518310129920, 30821040496874234880, 5569495264653352381440, 1095113648992295923200000, 232773183612995427763200000, 53186532693832607435089920000
Offset: 0
Cf.
A187536,
A008297,
A111596,
A187536,
A187538,
A187539,
A187540,
A187542,
A187543,
A187544,
A187545,
A187546,
A187548.
-
a := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi;
seq(a(n)*sum(1/k,k=1..n+1),n=0..12);
-
a[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
Table[a[n]HarmonicNumber[n + 1], {n, 0, 20}]
-
a(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
makelist(a(n)*sum(1/k,k,1,n+1),n,0,12);
A136656
Coefficients for rewriting generalized falling factorials into ordinary falling factorials.
Original entry on oeis.org
1, 0, -2, 0, 6, 4, 0, -24, -36, -8, 0, 120, 300, 144, 16, 0, -720, -2640, -2040, -480, -32, 0, 5040, 25200, 27720, 10320, 1440, 64, 0, -40320, -262080, -383040, -199920, -43680, -4032, -128, 0, 362880, 2963520, 5503680, 3764880, 1142400, 163968, 10752, 256, 0, -3628800, -36288000, -82978560
Offset: 0
Triangle starts:
[1]
[0, -2]
[0, 6, 4]
[0, -24, -36, -8]
[0, 120, 300, 144, 16]
...
Recurrence: a(4,2) = -7*a(3,2)-2*a(3,1) = -7*(-36) -2*(-24) = 300.
a(4,2)=300 as sum over the M3 numbers A036040 for the 2 parts partitions of 4: 4*fallfac(-2,1)^1*fallfac(-2,3)^1 + 3*fallfac(-2,2)^2 = 4*(-2)*(-24)+3*6^2 = 300.
Row n=3: [0,-24,-36,-8] for the coefficients in rewriting fallfac(-2*t,3)=((-1)^3)*risefac(2*t,3) = ((-1)^3)*(2*t)*(2*t+1)*(2*t+2) = 0*1 -24*t -36*t*(t-1) -8*t*(t-1)*(t-2).
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, ch. 8.4 p. 301 ff. Table 8.3 (with row n=0 and column k=0 and s=-2).
Cf.
A136657 without row n=0 and column k=0, divided by 2.
-
# The function BellMatrix is defined in A264428.
BellMatrix(n -> (-1)^(n+1)*(n+2)!, 9); # Peter Luschny, Jan 27 2016
-
fallfac[n_, k_] := Pochhammer[n - k + 1, k]; a[n_, k_] := Sum[(-1)^(k - r)*Binomial[k, r]*fallfac[-2*r, n], {r, 0, k}]/k!; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 09 2013 *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 10;
M = BellMatrix[(-1)^(# + 1)*(# + 2)!&, rows];
Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (*Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
@CachedFunction
def T(n, k): # unsigned case
if k == 0: return 1 if n == 0 else 0
return sum(T(n-j-1,k-1)*(j+1)*(j+2)*gamma(n)/gamma(n-j) for j in (0..n-k))
for n in range(7): [T(n,k) for k in (0..n)] # Peter Luschny, Mar 31 2015
A185422
Forests of k increasing plane unary-binary trees on n nodes. Generalized Stirling numbers of the second kind associated with A185415.
Original entry on oeis.org
1, 1, 1, 3, 3, 1, 9, 15, 6, 1, 39, 75, 45, 10, 1, 189, 459, 330, 105, 15, 1, 1107, 3087, 2709, 1050, 210, 21, 1, 7281, 23535, 23814, 11109, 2730, 378, 28, 1, 54351, 197235, 228285, 122850, 36099, 6174, 630, 36, 1
Offset: 1
Triangle begins
n\k|....1......2......3......4......5......6......7
===================================================
..1|....1
..2|....1......1
..3|....3......3......1
..4|....9.....15......6......1
..5|...39.....75.....45.....10......1
..6|..189....459....330....105.....15......1
..7|.1107...3087...2709...1050....210.....21......1
..
Examples of the recurrence:
T(5,1) = 39 = T(4,0)+1*T(4,1)+2*T(4,2) = 1*9+2*15;
T(6,3) = 330 = T(5,2)+3*T(5,3)+3*4*T(5,4) = 75+3*45+12*10.
Examples of forests:
T(4,1) = 9. The 9 plane increasing unary-binary trees on 4 nodes are shown in the example section of A080635.
T(4,2) = 15. The 15 forests consisting of two plane increasing unary-binary trees on 4 nodes consist of the 12 forests
......... ......... ...3.....
.2...3... .3...2... ...|.....
..\./.... ..\./.... ...2.....
...1...4. ...1...4. ...|.....
......... ......... ...1...4.
.
......... ......... ...4.....
.2...4... .4...2... ...|.....
..\./.... ..\./.... ...2.....
...1...3. ...1...3. ...|.....
......... ......... ...1...3.
.
......... ......... ...4.....
.3...4... .4...3... ...|.....
..\./.... ..\./.... ...3.....
...1...2. ...1...2. ...|.....
......... ......... ...1...2.
......... ......... ...4.....
.3...4... .4...3... ...|.....
..\./.... ..\./.... ...3.....
...2...1. ...2...1. ...|.....
......... ......... ...2...1.
.
and the three remaining forests
......... ......... ..........
..2..4... ..3..4... ..4...3...
..|..|... ..|..|... ..|...|...
..1..3... ..1..2... ..1...2...
......... ......... ..........
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, in Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1922, pp. 24-48.
-
#A185422
P := proc(n,x)
description 'polynomial sequence P(n,x) A185415'
if n = 0
return 1
else
return x*(P(n-1,x-1)-P(n-1,x)+P(n-1,x+1))
end proc:
with combinat:
T:= (n,k) -> 1/k!*add ((-1)^(k-j)*binomial(k,j)*P(n,j),j = 0..k):
for n from 1 to 10 do
seq(T(n,k),k = 1..n);
end do;
-
t[n_, k_] := t[n, k] = t[n-1, k-1] + k*t[n-1, k] + k*(k+1)*t[n-1, k+1]; t[n_, n_] = 1; t[n_, k_] /; Not[1 <= k <= n] = 0; Table[t[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 22 2012, from given recurrence *)
-
{T(n,k)=if(n<1||k<1||k>n,0,if(n==k,1,T(n-1,k-1)+k*T(n-1,k)+k*(k+1)*T(n-1,k+1)))}
-
{T(n,k)=round(n!*polcoeff(polcoeff(exp(y*(-1/2+sqrt(3)/2*tan(sqrt(3)/2*x+Pi/6+x*O(x^n)))+y*O(y^k)),n,x),k,y))}
-
# uses[bell_matrix from A264428]
# Adds a column 1,0,0,0, ... at the left side of the triangle.
bell_matrix(lambda n: A080635(n+1), 10) # Peter Luschny, Jan 18 2016
A134151
Triangle of numbers obtained from the partition array A134150.
Original entry on oeis.org
1, 4, 1, 28, 4, 1, 280, 44, 4, 1, 3640, 392, 44, 4, 1, 58240, 5544, 456, 44, 4, 1, 1106560, 80640, 5992, 456, 44, 4, 1, 24344320, 1519840, 88256, 6248, 456, 44, 4, 1, 608608000, 31420480, 1631392, 90048, 6248, 456, 44, 4, 1, 17041024000, 766525760, 33293120
Offset: 1
[1]; [4,1]; [28,4,1]; [280,44,4,1]; [3640,392,44,4,1];...
A248045
(2*(n-1))! * (2*n-1)! / (n * (n-1)!^3).
Original entry on oeis.org
1, 6, 120, 4200, 211680, 13970880, 1141620480, 111307996800, 12614906304000, 1629845894476800, 236475822507724800, 38072607423743692800, 6735922851893114880000, 1299070835722243584000000, 271245990498804460339200000, 60962536364606302461235200000
Offset: 1
A001778
Lah numbers: a(n) = n!*binomial(n-1,5)/6!.
Original entry on oeis.org
1, 42, 1176, 28224, 635040, 13970880, 307359360, 6849722880, 155831195520, 3636061228800, 87265469491200, 2157837063782400, 55024845126451200, 1447576694865100800, 39291367432052736000, 1100158288097476608000, 31767070568814637056000
Offset: 6
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Column m=6 of unsigned triangle
A111596.
-
[Factorial(n-6)*Binomial(n,6)*Binomial(n-1,5): n in [6..30]]; // G. C. Greubel, May 10 2021
-
A001778 := proc(n)
n!*binomial(n-1,5)/6! ;
end proc:
seq(A001778(n),n=6..30) ; # R. J. Mathar, Jan 06 2021
-
With[{c=6!},Table[n!Binomial[n-1,5]/c,{n,6,24}]] (* Harvey P. Dale, May 25 2011 *)
-
[binomial(n,6)*factorial(n-1)/factorial(5) for n in range(6, 22)] # Zerinvary Lajos, Jul 07 2009
Previous
Showing 61-70 of 107 results.
Next
Comments