A189977 Primes p such that d(p+1) = 2*d(p-1), where d(k) counts the divisors of k.
2, 23, 149, 293, 311, 439, 557, 569, 743, 773, 857, 1031, 1151, 1493, 1607, 1663, 1709, 1733, 1879, 1913, 2069, 2141, 2423, 2711, 2719, 2729, 2789, 2969, 3191, 3209, 3559, 3607, 3767, 3821, 3833, 3847, 3929, 3967, 4019, 4073, 4229, 4339, 4451, 4517, 4549
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Prime[Range[PrimePi[5059]]], 2*DivisorSigma[0, # - 1] == DivisorSigma[0, # + 1] &] (* T. D. Noe, May 03 2011 *)
-
PARI
isok(p) = isprime(p) && (numdiv(p+1) == 2*numdiv(p-1)); \\ Michel Marcus, Jan 13 2018
Comments