cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 124 results. Next

A008706 Coordination sequence for 3.3.3.4.4 planar net.

Original entry on oeis.org

1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275
Offset: 0

Views

Author

Keywords

Comments

Also the Engel expansion of exp^(1/5); cf. A006784 for the Engel expansion definition. - Benoit Cloitre, Mar 03 2002

Examples

			G.f. = 1 + 5*x + 10*x^2 + 15*x^3 + 20*x^4 + 25*x^5 + 30*x^6 + 35*x^7 + ...
		

Crossrefs

Cf. A006784, A048476 (binomial Transf.)
Essentially the same as A008587.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
First differences of A005891.

Programs

Formula

From Paul Barry, Jul 21 2003: (Start)
G.f.: (1 + 3*x + x^2)/(1 - x)^2.
a(n) = 0^n + 5n. (End)
G.f.: A(x) + 1, where A(x) is the g.f. of A008587. - Gennady Eremin, Feb 21 2021
E.g.f.: 1 + 5*x*exp(x). - Stefano Spezia, Jan 05 2023

A017293 a(n) = 10*n + 2.

Original entry on oeis.org

2, 12, 22, 32, 42, 52, 62, 72, 82, 92, 102, 112, 122, 132, 142, 152, 162, 172, 182, 192, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 302, 312, 322, 332, 342, 352, 362, 372, 382, 392, 402, 412, 422, 432, 442, 452, 462, 472, 482, 492, 502, 512, 522, 532
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Number of 5 X n 0-1 matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (11;0) and (01;1). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1A008574; m=3: A016933; m=4: A022144; m=6: A017569. - Sergey Kitaev, Nov 13 2004

Crossrefs

Programs

Formula

a(n) = 2*A016861(n) = A008592(n) + 2. - Wesley Ivan Hurt, May 03 2014
G.f.: 2*(1 + 4*x)/(1-x)^2. - Vincenzo Librandi, Jul 23 2016
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 2*exp(x)*(1 + 5*x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = A016873(2*n). (End)

A019557 Coordination sequence for G_2 lattice.

Original entry on oeis.org

1, 12, 30, 48, 66, 84, 102, 120, 138, 156, 174, 192, 210, 228, 246, 264, 282, 300, 318, 336, 354, 372, 390, 408, 426, 444, 462, 480, 498, 516, 534, 552, 570, 588, 606, 624, 642, 660, 678, 696, 714, 732, 750, 768, 786, 804, 822, 840, 858, 876, 894, 912, 930, 948, 966, 984, 1002, 1020, 1038, 1056
Offset: 0

Views

Author

Michael Baake (mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de)

Keywords

Comments

Also, coordination sequence of Dual(3.12.12) tiling with respect to a 12-valent node. - N. J. A. Sloane, Jan 22 2018
For n > 1, also the number of minimum vertex colorings of the n-Andrásfai graph. - Eric W. Weisstein, Mar 03 2024

Examples

			From _Peter M. Chema_, Mar 20 2016: (Start)
Illustration of initial terms:
                                                       o
                                                      o o
                                    o                o   o
                                   o o        o o o o o o o o o o
                  o           o o o o o o o    o   o       o   o
               o o o o         o o     o o      o o         o o
     o          o   o           o       o        o           o
               o o o o         o o     o o      o o         o o
                  o           o o o o o o o    o   o       o   o
                                   o o        o o o o o o o o o o
                                    o                o   o
                                                      o o
                                                       o
     1           12                30                 48
Compare to A003154, A045946, and A270700. (End)
		

Crossrefs

For partial sums see A082040.
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Mathematica
    CoefficientList[Series[(1 + 10 x + 7 x^2)/(1 - x)^2, {x, 0, 59}], x] (* Michael De Vlieger, Mar 21 2016 *)
  • PARI
    my(x='x+O('x^100)); Vec((1+10*x+7*x^2)/(1-x)^2) \\ Altug Alkan, Mar 20 2016

Formula

a(n) = 18*n - 6, n >= 1.
G.f.: (1 + 10*x + 7*x^2)/(1-x)^2.
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 6*exp(x)*(3*x - 1) + 7.
a(n) = 6*A016789(n-1) for n >= 1.
a(n) = 2*a(n-1) - a(n-2) for n >= 3. (End)

A296368 Coordination sequence for the Cairo or dual-3.3.4.3.4 tiling with respect to a trivalent point.

Original entry on oeis.org

1, 3, 8, 12, 15, 20, 25, 28, 31, 36, 41, 44, 47, 52, 57, 60, 63, 68, 73, 76, 79, 84, 89, 92, 95, 100, 105, 108, 111, 116, 121, 124, 127, 132, 137, 140, 143, 148, 153, 156, 159, 164, 169, 172, 175, 180, 185, 188, 191, 196, 201, 204, 207, 212, 217, 220, 223, 228
Offset: 0

Views

Author

N. J. A. Sloane, Dec 21 2017

Keywords

Comments

There are two types of point in this tiling. This is the coordination sequence with respect to a point of degree 3.
The coordination sequence with respect to a point of degree 4 (see second illustration) is simply 1, 4, 8, 12, 16, 20, ..., the same as the coordination sequence for the 4.4.4.4 square grid (A008574). See the CGS-NJAS link for the proof.

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Fig. 9.1.3, drawing P_5-24, page 480.
  • Herbert C. Moore, U.S. Patents 928,320 and 928,321, Patented July 20 1909. [Shows Cairo tiling.]

Crossrefs

For partial sums see A296909.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Mathematica
    Join[{1, 3, 8}, LinearRecurrence[{2, -2, 2, -1}, {12, 15, 20, 25}, 100]] (* Jean-François Alcover, Aug 05 2018 *)
  • PARI
    \\ See Links section.

Formula

The simplest formula is: a(0)=1, a(1)=2, a(2)=8, and thereafter a(n) = 4n if n is odd, 4n - 1 if n == 0 (mod 4), and 4n+1 if n == 2 (mod 4). (See the CGS-NJAS link for proof. - N. J. A. Sloane, May 10 2018)
a(n + 4) = a(n) + 16 for any n >= 3. - Rémy Sigrist, Dec 23 2017 (See the CGS-NJAS link for a proof. - N. J. A. Sloane, Dec 30 2017)
G.f.: -(x^6-x^5-2*x^4-4*x^2-x-1)/((x^2+1)*(x-1)^2).
From Colin Barker, Dec 23 2017: (Start)
a(n) = (8*n - (-i)^n - i^n) / 2 for n>2, where i=sqrt(-1).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>6.
(End)

Extensions

Terms a(8)-a(20) and RCSR link from Davide M. Proserpio, Dec 22 2017
More terms from Rémy Sigrist, Dec 23 2017

A298035 Coordination sequence of Dual(3.12.12) tiling with respect to a trivalent node.

Original entry on oeis.org

1, 3, 21, 39, 57, 75, 93, 111, 129, 147, 165, 183, 201, 219, 237, 255, 273, 291, 309, 327, 345, 363, 381, 399, 417, 435, 453, 471, 489, 507, 525, 543, 561, 579, 597, 615, 633, 651, 669, 687, 705, 723, 741, 759, 777, 795, 813, 831, 849, 867, 885, 903, 921, 939, 957, 975, 993, 1011, 1029, 1047, 1065
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2018

Keywords

Comments

This tiling is sometimes called the triakis triangular tiling.

Crossrefs

Cf. A019557 (12-valent node), A016790 (partial sums, provided its offset is changed).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Maple
    f3:=proc(n) if n=0 then 1 else 18*n-15; fi; end;
    [seq(f3(n),n=0..80)];
  • PARI
    Vec((1 + x + 16*x^2) / (1 - x)^2 + O(x^60)) \\ Colin Barker, Jan 22 2018

Formula

Theorem: a(0)=1; thereafter a(n) = 18*n-15. [Proof: Use the "coloring book" method described in the Goodman-Strauss & Sloane article.]
From Colin Barker, Jan 22 2018: (Start)
G.f.: (1 + x + 16*x^2) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>2.
(End)

A072704 Triangle of number of weakly unimodal partitions/compositions of n into exactly k terms.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 8, 7, 5, 1, 1, 6, 12, 12, 9, 6, 1, 1, 7, 16, 20, 16, 11, 7, 1, 1, 8, 21, 30, 28, 20, 13, 8, 1, 1, 9, 27, 42, 45, 36, 24, 15, 9, 1, 1, 10, 33, 58, 68, 60, 44, 28, 17, 10, 1, 1, 11, 40, 77, 98, 95, 75, 52, 32, 19, 11, 1
Offset: 1

Views

Author

Henry Bottomley, Jul 04 2002

Keywords

Examples

			Rows start:
01:  [1]
02:  [1, 1]
03:  [1, 2, 1]
04:  [1, 3, 3, 1]
05:  [1, 4, 5, 4, 1]
06:  [1, 5, 8, 7, 5, 1]
07:  [1, 6, 12, 12, 9, 6, 1]
08:  [1, 7, 16, 20, 16, 11, 7, 1]
09:  [1, 8, 21, 30, 28, 20, 13, 8, 1]
10:  [1, 9, 27, 42, 45, 36, 24, 15, 9, 1]
...
T(6,3)=8 since 6 can be written as 1+1+4, 1+2+3, 1+3+2, 1+4+1, 2+2+2, 2+3+1, 3+2+1, or 4+1+1 but not 2+1+3 or 3+1+2.
		

Crossrefs

Cf. A059623, A072705. Row sums are A001523. First column is A057427, second is A000027 offset, third appears to be A000212 offset, right hand columns include A000012, A000027, A005408 and A008574.
The case of partitions is A072233.
Dominates A332670 (the version for negated compositions).
The strict case is A072705.
The case of constant compositions is A113704.
Unimodal sequences covering an initial interval are A007052.
Partitions whose run-lengths are unimodal are A332280.

Programs

  • Maple
    b:= proc(n, i) option remember; local q; `if`(i>n, 0,
          `if`(irem(n, i, 'q')=0, x^q, 0) +expand(
          add(b(n-i*j, i+1)*(j+1)*x^j, j=0..n/i)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 1)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Mar 26 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[i>n, 0, If[Mod[n, i ] == 0, x^Quotient[n, i], 0] + Expand[ Sum[b[n-i*j, i+1]*(j+1)*x^j, {j, 0, n/i}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, 1]]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{k}],unimodQ]],{n,0,10},{k,0,n}] (* Gus Wiseman, Mar 06 2020 *)
  • PARI
    \\ starting for n=0, with initial column 1, 0, 0, ...:
    N=25;  x='x+O('x^N);
    T=Vec(1 + sum(n=1, N, t*x^n / ( prod(k=1,n-1, (1 - t*x^k)^2 ) * (1 - t*x^n) ) ) )
    for(r=1,#T, print(Vecrev(T[r])) ); \\ Joerg Arndt, Oct 01 2017

Formula

G.f. with initial column 1, 0, 0, ...: 1 + Sum_{n>=1} (t*x^n / ( ( Product_{k=1..n-1} (1 - t*x^k)^2 ) * (1 - t*x^n) ) ). - Joerg Arndt, Oct 01 2017

A298036 Coordination sequence of Dual(4.6.12) tiling with respect to a 12-valent node.

Original entry on oeis.org

1, 12, 12, 36, 24, 60, 36, 84, 48, 108, 60, 132, 72, 156, 84, 180, 96, 204, 108, 228, 120, 252, 132, 276, 144, 300, 156, 324, 168, 348, 180, 372, 192, 396, 204, 420, 216, 444, 228, 468, 240, 492, 252, 516, 264, 540, 276, 564, 288, 588, 300
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2018

Keywords

Comments

Conjecture: For n>0, a(n)=6n if n even, otherwise 12n.
The conjecture can easily be shown to be true: The vertices at distance 2k consist of 3k 12-valent and 3k 4-alent vertices, and the vertices at distance 2k+1 consist of 6(k+1) 6-valent and 6(k+1) 4-valent vertices. - Charlie Neder, Apr 22 2019

Crossrefs

Cf. A072154, A298037 (partial sums), A298038 (hexavalent node), A298040 (tetravalent node).
Cf. A109043 (a(n)/6), A026741 (a(n)/12).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Mathematica
    LinearRecurrence[{0, 2, 0, -1}, {1, 12, 12, 36, 24}, 100] (* Paolo Xausa, Jul 19 2024 *)

Formula

From Charlie Neder, Apr 22 2019: (Start)
a(n) = 6 * n * (1 + n mod 2), n > 0.
G.f.: (1 + 12*x + 10*x^2 + 12*x^3 + x^4)/(1 - x^2)^2. (End)

Extensions

a(7)-a(50) from Charlie Neder, Apr 22 2019

A298038 Coordination sequence of Dual(4.6.12) tiling with respect to a hexavalent node.

Original entry on oeis.org

1, 6, 24, 18, 48, 30, 72, 42, 96, 54, 120, 66, 144, 78, 168, 90, 192, 102, 216, 114, 240, 126, 264, 138, 288, 150, 312, 162, 336, 174, 360, 186, 384, 198, 408, 210, 432, 222, 456, 234, 480, 246, 504, 258, 528, 270, 552, 282, 576, 294, 600, 306, 624, 318, 648
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2018

Keywords

Comments

Conjecture: For n > 0, a(n)=12n if n even, otherwise 6n.
From Keagan Boyce, May 18 2024: (Start)
It appears that
a(n) = (3*n)*(3+(-1)^n) for n > 0,
which would imply that for all even n > 0,
a(n) = (3*n)*(3+(1)) = (3*n)*(4) = 12*n,
and for all odd n > 0,
a(n) = (3*n)*(3+(-1)) = (3*n)*(2) = 6*n. (End)

Crossrefs

Cf. A072154, A298039 (partial sums), A298036 (12-valent node), A298040 (tetravalent node).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Formula

Conjectures from Colin Barker, Apr 03 2020: (Start)
G.f.: (1 + 6*x + 22*x^2 + 6*x^3 + x^4) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n > 4. (End)

Extensions

Terms a(8)-a(54) added by Tom Karzes, Apr 01 2020

A298040 Coordination sequence of Dual(4.6.12) tiling with respect to a tetravalent node.

Original entry on oeis.org

1, 4, 20, 24, 40, 40, 60, 56, 80, 72, 100, 88, 120, 104, 140, 120, 160, 136, 180, 152, 200, 168, 220, 184, 240, 200, 260, 216, 280, 232, 300, 248, 320, 264, 340, 280, 360, 296, 380, 312, 400, 328, 420, 344, 440, 360, 460, 376, 480, 392, 500, 408, 520, 424, 540
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2018

Keywords

Crossrefs

Cf. A072154, A298041 (partial sums), A298036 (12-valent node), A298038 (hexavalent node).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Mathematica
    LinearRecurrence[{0,2,0,-1},{1,4,20,24,40,40},60] (* Harvey P. Dale, Apr 06 2022 *)

Formula

Conjecture: For n>0, a(n)=10n if n even, otherwise 8n.
Conjectures from Colin Barker, Apr 01 2020: (Start)
G.f.: (1 + 4*x + 18*x^2 + 16*x^3 + x^4 - 4*x^5) / ((1 - x)^2*(1 + x)^2).
a(n) = (9 + (-1)^n)*n for n>1.
a(n) = 2*a(n-2) - a(n-4) for n>5.
(End)

Extensions

Terms a(8)-a(54) added by Tom Karzes, Apr 01 2020

A234275 Expansion of (1+2*x+9*x^2-4*x^3)/(1-x)^2.

Original entry on oeis.org

1, 4, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352, 360, 368, 376, 384, 392, 400, 408, 416, 424, 432
Offset: 0

Views

Author

N. J. A. Sloane, Dec 24 2013

Keywords

Comments

Also the coordination sequence for a point of degree 4 in the tiling of the Euclidean plane by right triangles (with angles Pi/2, Pi/4, Pi/4). These triangles are fundamental regions for the Coxeter group (2,4,4). In the notation of Conway et al. 2008 this is the tiling *442. The coordination sequence for a point of degree 8 is given by A022144. - N. J. A. Sloane, Dec 28 2015
First differences of number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 899", based on the 5-celled von Neumann neighborhood. Initialized with a single black (ON) cell at stage zero. - Robert Price, May 28 2016

References

  • J. H. Conway, H. Burgiel and Chaim Goodman-Strauss, The Symmetries of Things, A K Peters, Ltd., 2008, ISBN 978-1-56881-220-5. See p. 191.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

For partial sums see A265056.
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Mathematica
    Join[{1, 4}, LinearRecurrence[{2, -1}, {16, 24}, 60]] (* Jean-François Alcover, Jan 08 2019 *)
  • PARI
    Vec(-(4*x^3-9*x^2-2*x-1)/(x-1)^2 + O(x^100)) \\ Colin Barker, Jul 10 2015

Formula

a(n) = A022144(n), n>1. - R. J. Mathar, Jan 11 2014
From Colin Barker, Jul 10 2015: (Start)
a(n) = 8*n, n>1.
a(n) = 2*a(n-1) - a(n-2) for n>3.
G.f.: -(4*x^3-9*x^2-2*x-1) / (x-1)^2.
(End)
Previous Showing 51-60 of 124 results. Next