cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 54 results. Next

A304158 a(n) is the second Zagreb index of the linear phenylene G[n], defined pictorially in the Darafsheh reference (Fig. 3).

Original entry on oeis.org

24, 84, 144, 204, 264, 324, 384, 444, 504, 564, 624, 684, 744, 804, 864, 924, 984, 1044, 1104, 1164, 1224, 1284, 1344, 1404, 1464, 1524, 1584, 1644, 1704, 1764, 1824, 1884, 1944, 2004, 2064, 2124, 2184, 2244, 2304, 2364, 2424, 2484, 2544, 2604, 2664, 2724, 2784, 2844, 2904, 2964
Offset: 1

Views

Author

Emeric Deutsch, May 08 2018

Keywords

Comments

The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of the linear phenylene G[n] is M(G[n];x,y) = 6*x^2*y^2 + 4*(n - 1)*x^2*y^3 + 4(n - 1)*x^3*y^3.

Examples

			a(1) = 24; indeed, G[1] is a hexagon; we have 6 edges, each with end vertices of degree 2; then the second Zagreb index is 6*2*2 =24.
		

Crossrefs

Subsequence of A121024.

Programs

  • Julia
    [60*n-36 for n in 1:50] |> println # Bruno Berselli, May 09 2018
    
  • Maple
    seq(60*n - 36, n = 1 .. 40);
  • PARI
    a(n) = 60*n-36; \\ Altug Alkan, May 09 2018
    
  • PARI
    Vec(12*x*(2 + 3*x)/(1 - x)^2 + O(x^40)) \\ Colin Barker, May 23 2018

Formula

a(n) = 60*n - 36.
a(n) = 12 * A016873(n-1). - Alois P. Heinz, May 09 2018
From Bruno Berselli, May 09 2018: (Start)
O.g.f.: 12*x*(2 + 3*x)/(1 - x)^2.
E.g.f.: 12*(3 - 3*exp(x) + 5*x*exp(x)).
a(n) = 2*a(n-1) - a(n-2).
a(n) = A008594(5*n-3) = A017317(6*n-4) = A072710(4*n-2) = A139245(3*n-1). (End)

A370238 a(n) = n*(3*n + 23)/2.

Original entry on oeis.org

0, 13, 29, 48, 70, 95, 123, 154, 188, 225, 265, 308, 354, 403, 455, 510, 568, 629, 693, 760, 830, 903, 979, 1058, 1140, 1225, 1313, 1404, 1498, 1595, 1695, 1798, 1904, 2013, 2125, 2240, 2358, 2479, 2603, 2730, 2860, 2993, 3129, 3268, 3410, 3555, 3703, 3854, 4008
Offset: 0

Views

Author

Torlach Rush, Feb 12 2024

Keywords

Comments

a(a(1)) = A000566(a(1)). This is also true for each of the sequences provided in the formulae below; e.g., A151542(A151542(1)) = A000566(A151542(1)).

Crossrefs

Programs

  • Mathematica
    Table[n(3n+23)/2,{n,0,48}] (* James C. McMahon, Feb 20 2024 *)
  • Python
    def a(n): return n*(3*n+23)//2

Formula

a(n) = n*(3*n + 23)/2 = A277976(n)/2.
G.f.: x*(13-10*x)/(1-x)^3.
a(n) = A151542(n) + n.
a(n) = A140675(n) + 2*n.
a(n) = A140674(n) + 3*n.
a(n) = A140673(n) + 4*n.
a(n) = A140672(n) + 5*n.
a(n) = A059845(n) + 6*n.
a(n) = A140091(n) + 7*n.
a(n) = A140090(n) + 8*n.
a(n) = A115067(n) + 9*n.
a(n) = A045943(n) + 10*n.
a(n) = A005449(n) + 11*n.
a(n) = A000326(n) + A008594(n).
Sum_{n>=1} 1/a(n) = 823467/2769844 + sqrt(3)*Pi/69 -3*log(3)/23 = 0.2328608... - R. J. Mathar, Apr 23 2024
E.g.f.: exp(x)*x*(26 + 3*x)/2. - Stefano Spezia, Apr 26 2024

A382932 a(n) is the altitude of the Pythagorean triangle (A046083(A382931(n)), A046084(A382931(n)), A009000(A382931(n))).

Original entry on oeis.org

12, 24, 36, 48, 60, 72, 60, 84, 96, 108, 120, 132, 120, 144, 156, 120, 168, 180, 192, 204, 216, 228, 240, 180, 252, 264, 276, 240, 288, 300, 168, 312, 324, 240, 336, 348, 360, 372, 384, 396, 420, 300, 408, 360, 420, 432, 444, 456, 468, 480, 360, 492, 504, 516
Offset: 1

Views

Author

Felix Huber, Apr 13 2025

Keywords

Comments

All terms are divisible by 12. Proof: (Start)
Let (a, b, c) be a primitive Pythagorean triple. Since gcd(a, b, c) = 1, all and only the Pythagorean triples (k*c*a, k*c*b, k*c^2) have an integer altitude h = (k*c*a*k*c*b)/(k*c^2) = k*a*b, where k is a positive integer.
With a = p^2 - q^2 and b = 2*p*q follows h = 2*k*p*q*(p^2 - q^2) = k*2*p*q*(p + q)*(p - q), where p > q > 0, gcd(p,q) = 1 and p or q is even.
It is to show that p*q*(p + q)*(p - q) is divisible by 6. Since p or q is divisible by 2, it remains to show that p*q*(p + q)*(p - q) is divisible by 3.
If 3 is a divisor of p or q, p*q is divisible by 3. If p mod 3 = 1 and q mod 3 = 2 or p mod 3 = 2 and q mod 3 = 1, then p + q is divisible by 3. If p mod 3 = q mod 3 = 1 or p mod 3 = q mod 3 = 2, then p - q is divisible by 3.
It follows that all terms are divisible by 12. (End)

Examples

			a(1) = 12 because the Pythagorean triangle (A046083(A382931(1)), A046084(A382931(1)), A009000(A382931(1))) = (A046083(7), A046084(7), A009000(7)) = (15, 20, 25) has the integer altitude 15*20/25 = 12.
		

Crossrefs

Programs

  • Maple
    A382932:=proc(H) # All hypotenuses <= H.
        local a,b,c,k,p,q,L,M;
        L:=[];
        M:=[];
        for p from 2 to floor(sqrt(H-1)) do
            for q to min(p-1,floor(sqrt(H-p^2))) do
                if gcd(p,q)=1 and is(p-q,odd) then
                    a:=p^2-q^2;
                    b:=2*p*q;
                    c:=p^2+q^2;
                    for k to iquo(H,c) do
                        L:=[op(L),[k*c,k*max(a,b),k*a*b/c]]
                    od
                fi
            od
        od;
        L:=sort(L);
        for k to nops(L) do
            if is(L[k,3],integer) then
               M:=[op(M),L[k,3]]
            fi
        od;
        return op(M)
    end proc;
    A382932(1075);

Formula

A383488 Numbers k that have at least one divisor d_i(k) for which a divisor d_j(k) exists such that d_i(k) < d_j(k) < sigma(d_i(k)).

Original entry on oeis.org

12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 99, 100, 102, 104, 105, 108, 110, 112, 114, 120, 126, 130, 132, 138, 140, 144, 150, 154, 156, 160, 162, 168, 170, 174, 176, 180, 186, 189, 192, 196, 198, 200, 204, 208, 210, 216
Offset: 1

Views

Author

Felix Huber, May 03 2025

Keywords

Comments

Numbers k (without multiplicity) that are multiples of lcm(c,i), where c is any composite and i is any integer from [c + 1, sigma(c) - 1].

Examples

			All multiples of 12 (A008594) are terms because 12 has the divisors 4 and 6 where sigma(4) = 7 > 6.
All multiples of 18 (A008600) are terms because 18 has the divisors 6 and 9 where sigma(6) = 12 > 9.
All multiples of 20 (A008602) are terms because 20 has the divisors 4 and 5 where sigma(4) = 7 > 5.
		

Crossrefs

Programs

  • Maple
    with(NumberTheory):
    A383488:=proc(n)
        option remember;
        local k,i,L;
        if n=1 then
            12
        else
            for k from procname(n-1)+1 do
                L:=Divisors(k);
                for i to nops(L)-1 do
                    if sigma(L[i])>L[i+1] then
                        return k
                    fi
                od
            od
        fi;
    end proc;
    seq(A383488(n),n=1..57);

A062902 Number and its reversal are both multiples of 12.

Original entry on oeis.org

0, 48, 84, 216, 252, 276, 408, 420, 444, 468, 480, 612, 636, 672, 696, 804, 828, 840, 864, 888, 2100, 2112, 2124, 2136, 2148, 2160, 2172, 2184, 2196, 2304, 2316, 2328, 2340, 2352, 2364, 2376, 2388, 2508, 2520, 2532, 2544, 2556, 2568, 2580, 2592, 2700, 2712
Offset: 1

Views

Author

Amarnath Murthy, Jul 01 2001

Keywords

Comments

Numbers divisible by 12 with reversal divisible by 4. - Robert Israel, May 04 2025

Examples

			216 and 612 are both multiples of 12.
		

Crossrefs

Cf. A062897 (2), A062898 (4), A062899 (6), A062900 (8), A062901 (7), A062903 (13), A062904 (14), A062905 (15), A062906 (17), A062907 (19).

Programs

  • ARIBAS
    n := 12; stop := 2800; m := 0; while m < stop do rev := int_reverse(m); if rev mod n = 0 then write(m," "); end; inc(m,n); end;
  • Maple
    rev:= proc(n) local L,i;
      L:= convert(n,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    select(t -> rev(t) mod 12 = 0, [seq(i,i=0..3000,12)]); # Robert Israel, May 04 2025

Extensions

Corrected and extended by Dean Hickerson, Jul 06 2001
Offset changed by Georg Fischer, Sep 08 2022

A063669 Hypotenuses of reciprocal Pythagorean triangles: number of solutions to 1/(12n)^2 = 1/b^2 + 1/c^2 [with b >= c > 0]; also number of values of A020885 (with repetitions) which divide n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 2, 1, 4, 1, 1, 1, 1, 4, 1, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 2, 1, 1, 1, 4, 1, 1, 1, 1, 2, 1, 1, 1, 1, 6, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 3, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5
Offset: 1

Views

Author

Henry Bottomley, Jul 28 2001

Keywords

Comments

Primitive reciprocal Pythagorean triangles 1/a^2 = 1/b^2 + 1/c^2 have a=fg, b=ef, c=eg where e^2 = f^2 + g^2; i.e., e,f,g represent the sides of primitive Pythagorean triangles. But the product of the two legs of primitive Pythagorean triangles are multiples of 12 and so the reciprocal of hypotenuses of reciprocal Pythagorean triangles are always multiples of 12 (A008594).

Examples

			a(1)=1 since 1/(12*1)^2 = 1/12^2 = 1/15^2 + 1/20^2;
a(70)=6 since 1/(12*70)^2 = 1/840^2 = 1/875^2 + 1/3000^2 = 1/888^2 + 1/2590^2 = 1/910^2 + 1/2184^2 = 1/952^2 + 1/1785^2 = 1/1050^2 + 1/1400^2 = 1/1160^2 + 1/1218^2.
Looking at A020885, 1 is divisible by 1, while 70 is divisible by 1, 5, 10, 14, 35 and again 35.
		

Crossrefs

A309118 Number of tiles added at iteration n when successively, layer by layer, building a symmetric patch of a rhombille tiling around a central star of six rhombs.

Original entry on oeis.org

6, 6, 12, 18, 24, 24, 36, 30, 48, 36, 60, 42, 72, 48, 84, 54, 96, 60, 108, 66, 120, 72, 132, 78, 144, 84, 156, 90, 168, 96, 180, 102, 192, 108, 204, 114, 216, 120, 228, 126, 240, 132, 252, 138, 264, 144, 276, 150, 288, 156, 300, 162, 312, 168, 324, 174, 336
Offset: 1

Views

Author

Felix Fröhlich, Jul 13 2019

Keywords

Examples

			See illustration in Fröhlich, 2019.
		

Crossrefs

Cf. A242128 (5-fold, Star), A242129 (5-fold, Sun), A242888 (7-fold, Star), A242889 (7-fold, Sun), A242890 (8-fold, Star), A242891 (8-fold, Sun), A242892 (9-fold, Star), A242893 (9-fold, Sun), A242894 (Kite and dart, Star), A242895 (Kite and dart, Sun).

Programs

  • Magma
    I:=[6,6,12,18,24,24]; [n le 6 select I[n] else 2*Self(n-2)-Self(n-4): n in [1..60]]; // Vincenzo Librandi, Jul 16 2019
  • Mathematica
    Join[{6, 6}, LinearRecurrence[{0, 2, 0, -1}, {12, 18, 24, 24}, 60]] (* Vincenzo Librandi, Jul 16 2019 *)
  • PARI
    a(n) = if(n<3, 6, if(n%2==0, 6*((n+2)/2), 12*((n-1)/2)))
    
  • PARI
    Vec(6*x*(1 + x + x^3 + x^4 - x^5) / ((1 - x)^2*(1 + x)^2) + O(x^40)) \\ Colin Barker, Jul 13 2019
    

Formula

a(2*n+1) = A008594(n).
a(2*n) = A008588(n+1) for n > 1.
From Colin Barker, Jul 13 2019: (Start)
G.f.: 6*x*(1 + x + x^3 + x^4 - x^5) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>6.
(End)

A332019 The number of cells added in the n-th generation of the following procedure: start by coloring any triangle on the snub square tiling, then repeatedly color every cell that shares a vertex with a colored cell.

Original entry on oeis.org

1, 9, 21, 35, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 360, 372, 384, 396, 408, 420, 432, 444, 456, 468, 480, 492, 504, 516, 528, 540, 552, 564, 576, 588, 600, 612, 624, 636
Offset: 1

Views

Author

Peter Kagey, Feb 04 2020

Keywords

Crossrefs

Cf. A008594.
A296368 is the analogous sequence when instead coloring every cell that shares a side with a colored cell.

Formula

a(n) = 12*(n - 1) for n > 4.
From Stefano Spezia, Feb 05 2020: (Start)
G.f.: x*(1 + 7*x + 4*x^2 + 2*x^3 - x^4 - x^5)/(-1 + x)^2.
a(n) = 2*a(n-1) - a(n-2) for n > 6.
(End)

A333814 Multiples of 12 whose sum of digits is 12.

Original entry on oeis.org

48, 84, 156, 192, 228, 264, 336, 372, 408, 444, 480, 516, 552, 624, 660, 732, 804, 840, 912, 1056, 1092, 1128, 1164, 1236, 1272, 1308, 1344, 1380, 1416, 1452, 1524, 1560, 1632, 1704, 1740, 1812, 1920, 2028, 2064, 2136, 2172, 2208, 2244, 2280, 2316, 2352, 2424
Offset: 1

Views

Author

Bernard Schott, Apr 06 2020

Keywords

Comments

If m is a term, 10*m is also a term.

Examples

			732 = 12 * 61 and 7 + 3 + 2 = 12, hence 732 is a term.
		

Crossrefs

Intersection of A235151 (sum of digits = 12) and A008594 (multiples of 12).
Multiples of k whose sum of digits = k: A011557 (k=1), A069537 (k=2), A052217 (k=3), A063997 (k=4), A069540 (k=5), A062768 (k=6), A063416 (k=7), A069543 (k=8), A052223 (k=9), A333834 (k=10), A283742 (k=11), this sequence (k=12), A283737 (k=13).
Cf. A008594 (multiples of 12), A235151 (sum of digits = 12).
Cf. A057147 (a(n) = n times sum of digits of n).

Programs

  • Mathematica
    Select[12 * Range[200], Plus @@ IntegerDigits[#] == 12 &] (* Amiram Eldar, Apr 06 2020 *)
  • PARI
    is(n)=sumdigits(n)==12 && n%4==0 \\ Charles R Greathouse IV, Apr 07 2020

Formula

a(n) ~ A235151(n). - Charles R Greathouse IV, Apr 07 2020

A144598 Christoffel word of slope 5/7.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jan 13 2009

Keywords

Comments

The path is on the slope after 0, 12, 24, 36, 48,... (A008594) steps, which gives the C-finite recurrence. - R. J. Mathar, May 28 2025

Crossrefs

See A144595 for further details.

Formula

a(n) = a(n-12). - R. J. Mathar, May 28 2025
G.f.: -x^2*(1+x^2+x^5+x^7+x^9) / ( (x-1)*(1+x+x^2)*(1+x)*(1-x+x^2)*(1+x^2)*(x^4-x^2+1) ). - R. J. Mathar, May 28 2025
Previous Showing 41-50 of 54 results. Next