cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A058035 Largest 4th-power-free number dividing n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 8, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 8, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 24, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 8, 65, 66, 67, 68, 69, 70, 71, 72
Offset: 1

Views

Author

Henry Bottomley, Nov 16 2000

Keywords

Examples

			a(96) = 24 since the factors of 96 are {1,2,3,4,6,8,12,16,24,32,48,96} but 32, 48 and 96 all contain a 4th power factor (16).
		

Crossrefs

Programs

  • Haskell
    a058035 n = product $
       zipWith (^) (a027748_row n) (map (min 3) $ a124010_row n)
    -- Reinhard Zumkeller, Jan 06 2012
    
  • Mathematica
    f[p_, e_] := p^Min[e, 3]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 09 2022 *)
  • PARI
    a(n) = my(f=factor(n)); for(k=1,#f~,f[k,2]=min(3,f[k,2])); factorback(f); \\ Michel Marcus, Sep 13 2017

Formula

Multiplicative with a(p^e) = p ^ min(e,3), p prime, e > 0. - Reinhard Zumkeller, Jan 06 2012
Sum_{k=1..n} a(k) ~ (1/2) * c * n^2, where c = Product_{p prime} (1 - 1/(p^3*(p+1))) = 0.947733... (A065466). - Amiram Eldar, Oct 13 2022

A295884 Number of exponents larger than 3 in the prime factorization of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2017

Keywords

Comments

a(1296) is the first term greater than 1, and a(810000) is the first term greater than 2. - Harvey P. Dale, Dec 22 2017

Examples

			For n = 16 = 2^4, there is one exponent and it is larger than 3, thus a(16) = 1.
For n = 96 = 2^5 * 3^1, there are two exponents, and the other one is larger than 3, thus a(96) = 1.
For n = 1296 = 2^4 * 3^4, there are two exponents larger than 3, thus a(1296) = 2.
		

Crossrefs

Programs

Formula

Additive with a(p^e) = 1 when e > 3, 0 otherwise.
a(n) = A295659(n) - A295883(n).
a(n) = A056170(A062378(n)) = A056170(A003557(A003557(n))) = A001221(A003557^3(n)).
a(n) = A001221(A053164(n)) = A001221(A008835(n)).
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = Sum_{p prime} 1/p^4 = 0.076993... (A085964). - Amiram Eldar, Nov 01 2020

A335324 Square part of 4th-power-free part of n.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 4, 1, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 4, 25, 1, 9, 4, 1, 1, 1, 1, 1, 1, 1, 36, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 1, 49, 25, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 1, 9, 4, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 25, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Peter Munn, May 31 2020

Keywords

Comments

Equivalently, biquadratefree (4th-power-free) part of square part of n.
Multiplicative. The terms are squares of squarefree numbers (A062503).
Every positive integer n is the product of a unique subset S_n of the terms of A050376 (sometimes called Fermi-Dirac primes). a(n) is the product of the members of S_n that are squares of prime numbers (A001248).

Examples

			Removing the 4th powers from 192 = 2^6 * 3^1 gives 2^(6 - 4) * 3^1 = 2^2 * 3 = 12. So the 4th-power-free part of 192 is 12. The square part of 12 (largest square dividing 12) is 4. So a(192) = 4.
		

Crossrefs

A007913, A008833, A008835, A053165 are used in formulas defining the sequence.
Column 1 of A352780.
Range of values is A062503.
Positions of 1's: A252895.
Related to A038500 by A225546.
The formula section details how the sequence maps the terms of A003961, A331590.

Programs

  • Mathematica
    f[p_, e_] := p^(2*Floor[e/2] - 4*Floor[e/4]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Jun 01 2020 *)
  • PARI
    A053165(n)=my(f=factor(n)); f[, 2]=f[, 2]%4; factorback(f);
    a(n) = my(m=A053165(n)); m/core(m); \\ Michel Marcus, Jun 01 2020
    
  • Python
    from math import prod
    from sympy import factorint
    def A335324(n): return prod(p**(e&2) for p, e in factorint(n).items()) # Chai Wah Wu, Aug 07 2024

Formula

a(n) = A053165(A008833(n)) = A008833(A053165(n)).
a(n) = A053165(n) / A007913(n).
a(n) = A008833(n) / A008835(n).
n = A007913(n) * a(n) * A008835(n).
a(n) = A225546(A038500(A225546(n))).
a(n^2) = A007913(n)^2.
a(A003961(n)) = A003961(a(n)).
a(A331590(n, k)) = A331590(a(n), a(k)).
a(p^e) = p^(2*floor(e/2) - 4*floor(e/4)). - Amiram Eldar, Jun 01 2020
From Amiram Eldar, Sep 21 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * zeta(4*s)/(zeta(2*s) * zeta(4*s-4)).
Sum_{k=1..n} a(k) ~ (4*zeta(3/2)*zeta(4))/(21*zeta(3)) * n^(3/2). (End)

A056553 Smallest 4th-power divisible by n divided by largest 4th-power which divides n.

Original entry on oeis.org

1, 16, 81, 16, 625, 1296, 2401, 16, 81, 10000, 14641, 1296, 28561, 38416, 50625, 1, 83521, 1296, 130321, 10000, 194481, 234256, 279841, 1296, 625, 456976, 81, 38416, 707281, 810000, 923521, 16, 1185921, 1336336, 1500625, 1296, 1874161, 2085136
Offset: 1

Views

Author

Henry Bottomley, Jun 25 2000

Keywords

Examples

			a(64) = 16 because smallest 4th power divisible by 64 is 256 and largest 4th power which divides 64 is 16 and 256/16 = 16.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^If[Divisible[e, 4], 0, 1]; a[n_] := (Times @@ (f @@@ FactorInteger[ n]))^4; Array[a, 100] (* Amiram Eldar, Aug 29 2019*)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%4, f[i,1], 1))^4; } \\ Amiram Eldar, Oct 27 2022

Formula

a(n) = A053167(n)/A008835(n) = A056556(n)*A053165(n) = A056554(n)^4.
From Amiram Eldar, Oct 27 2022: (Start)
Multiplicative with a(p^e) = 1 if e is divisible by 4, and a(p^e) = p^4 otherwise.
Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(20)/(5*zeta(4))) * Product_{p prime} (1 - 1/p^2 + 1/p^4 - 1/p^7 + 1/p^8) = 0.123026157003... . (End)

A056554 Powerfree kernel of 4th-powerfree part of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 1, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 3, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 2, 65, 66, 67, 34, 69, 70, 71, 6, 73, 74, 15, 38
Offset: 1

Views

Author

Henry Bottomley, Jun 25 2000

Keywords

Examples

			a(64) = 2 because 4th-power-free part of 64 is 4 and power-free kernel of 4 is 2.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] :=  p^If[Divisible[e, 4], 0, 1]; a[n_] := Times @@ (f @@@ FactorInteger[ n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, if (frac(f[k,2]/4), f[k,2] = 1, f[k,2] = 0)); factorback(f); \\ Michel Marcus, Feb 28 2019

Formula

a(n) = A007947(A053165(n)) = A053166(A053165(n)) = n/(A053164(n)*A000190(n)) = A053166(n)/A053164(n) = A056553(n)^(1/4).
If n = Product_{j} Pj^Ej then a(n) = Product_{j} Pj^Fj, where Fj = 0 if Ej is 0 or a multiple of 4 and Fj = 1 otherwise.
Multiplicative with a(p^e) = p^(if 4|e, then 0, else 1). - Mitch Harris, Apr 19 2005
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(8)/2) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4 + 1/p^5 - 1/p^6) = 0.3513111135... . - Amiram Eldar, Oct 27 2022

A056555 Smallest number k (k>0) such that n*k is a perfect 4th power.

Original entry on oeis.org

1, 8, 27, 4, 125, 216, 343, 2, 9, 1000, 1331, 108, 2197, 2744, 3375, 1, 4913, 72, 6859, 500, 9261, 10648, 12167, 54, 25, 17576, 3, 1372, 24389, 27000, 29791, 8, 35937, 39304, 42875, 36, 50653, 54872, 59319, 250, 68921, 74088, 79507, 5324, 1125
Offset: 1

Views

Author

Henry Bottomley, Jun 25 2000

Keywords

Examples

			a(64) = 4 because the smallest 4th power divisible by 64 is 256 and 64*4 = 256.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Mod[4 - e, 4]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 08 2020 *)
  • PARI
    a(n,f=factor(n))=f[,2]=-f[,2]%4; factorback(f) \\ Charles R Greathouse IV, Apr 24 2020

Formula

a(n) = A053167(n)/n = n^3/A000190(n)^4 = A056553(n)/A053165(n).
Multiplicative with a(p^e) = p^((4 - e) mod 4). - Amiram Eldar, Sep 08 2020
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(16)/(4*zeta(4))) * Product_{p prime} (1 - 1/p^2 + 1/p^4 - 1/p^7 + 1/p^8) = 0.1537848996... . - Amiram Eldar, Oct 27 2022

A062379 n divided by largest 4th-power-free factor of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Henry Bottomley, Jun 18 2001

Keywords

Crossrefs

Programs

Formula

a(n) = n/A058035(n).
Multiplicative with a(p^e) = p^max(e-3, 0). - Amiram Eldar, Sep 07 2020

A248764 Greatest 4th power integer that divides n!

Original entry on oeis.org

1, 1, 1, 1, 1, 16, 16, 16, 1296, 20736, 20736, 20736, 20736, 20736, 20736, 331776, 331776, 429981696, 429981696, 268738560000, 268738560000, 268738560000, 268738560000, 4299816960000, 4299816960000, 4299816960000, 348285173760000, 13379723235164160000
Offset: 1

Views

Author

Clark Kimberling, Oct 14 2014

Keywords

Comments

Every term divides all its successors.

Examples

			a(6) = 16 because 16 divides 6! and if k > 2 then k^4 does not divide 6!.
		

Crossrefs

Programs

  • Mathematica
    z = 40; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m];
    u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}];
    m = 4; Table[p[m, n], {n, 1, z}]  (* A248764 *)
    Table[p[m, n]^(1/m), {n, 1, z}]   (* A248765 *)
    Table[n!/p[m, n], {n, 1, z}]      (* A248766 *)
    f[p_, e_] := p^(4*Floor[e/4]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 30] (* Amiram Eldar, Sep 01 2024 *)
  • PARI
    a(n) = {my(f = factor(n!)); prod(i = 1, #f~, f[i, 1]^(4*(f[i, 2]\4)));} \\ Amiram Eldar, Sep 01 2024

Formula

a(n) = n!/A248766(n).
From Amiram Eldar, Sep 01 2024: (Start)
a(n) = A008835(n!).
a(n) = A248765(n)^4. (End)

A365490 The number of divisors of the largest 4th power dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 05 2023

Keywords

Comments

The number of divisors of the 4th root of the largest 4th power dividing n, A053164(n), is A063775(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 4*Floor[e/4] + 1; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> 4*(x\4) + 1, factor(n)[, 2]));
    
  • Python
    from math import prod
    from sympy import factorint
    def A365490(n): return prod(e&-4|1 for e in factorint(n).values()) # Chai Wah Wu, Aug 08 2024

Formula

a(n) = A000005(A008835(n)).
Multiplicative with a(p^e) = 4*floor(e/4) + 1.
a(n) = 1 if and only if n is a biquadratefree number (A046100).
a(n) <= A000005(n) with equality if and only if n is a fourth power (A000583).
Dirichlet g.f.: zeta(s) * zeta(4*s) * Product_{p prime} (1 + 3/p^(4*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 + 3/p^4) = 1.3414590511076... . In general, the asymptotic mean of the number of divisors of the largest k-th power dividing n is zeta(k) * Product_{p prime} (1 + (k-1)/p^k).

A128251 n^4 - 1 divided by its largest fourth power divisor.

Original entry on oeis.org

15, 5, 255, 39, 1295, 150, 4095, 410, 9999, 915, 20735, 1785, 38415, 3164, 65535, 5220, 104975, 8145, 159999, 12155, 234255, 17490, 331775, 24414, 456975, 33215, 614655, 44205, 809999, 57720, 1048575, 74120, 1336335, 93789, 1679615, 117135
Offset: 2

Views

Author

Jonathan Vos Post, May 03 2007

Keywords

Comments

In other words, biquadratefree part of n^4-1, or biquadratefree kernel of n^4-1. Fourth power analog of what A128972 is to cubes and A068310 is to squares. A046100 Biquadratefree numbers. A008835 Largest 4th power dividing n.

Examples

			a(3) = 5 because (3^4 - 1)/16 = 80/16 = (2^4 * 5)/(2^4) = 5.
a(5) = 39 because (5^4 - 1)/16 = 624/16 = (2^4 * 3 * 13)/(2^4) = 39.
a(7) = 150 because (7^4 - 1)/16 = 2400/16 = (2^5 * 3 * 5^2)/(2^4) = 150.
a(9) = 410 because (9^4 - 1)/16 = 6560/16 = (2^5 * 5 * 41)/(2^4) = 410.
a(63) = 61535 because (63^4 - 1)/256 = 15752960/256 = (2^8 * 5 * 31 * 397)/(2^8) = 61535.
		

Crossrefs

Formula

a(n) = (n^4 - 1)/A008835(n^4 - 1) = (A000583(n)-1)/A008835((A000583(n)-1)).
Previous Showing 11-20 of 20 results.