cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 200 results. Next

A304412 If n = Product (p_j^k_j) then a(n) = Product ((p_j + 1)*(k_j + 1)).

Original entry on oeis.org

1, 6, 8, 9, 12, 48, 16, 12, 12, 72, 24, 72, 28, 96, 96, 15, 36, 72, 40, 108, 128, 144, 48, 96, 18, 168, 16, 144, 60, 576, 64, 18, 192, 216, 192, 108, 76, 240, 224, 144, 84, 768, 88, 216, 144, 288, 96, 120, 24, 108, 288, 252, 108, 96, 288, 192, 320, 360, 120, 864, 124, 384, 192, 21, 336, 1152, 136, 324
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2018

Keywords

Examples

			a(36) = a(2^2*3^2) = (2 + 1)*(2 + 1) * (3 + 1)*(2 + 1) = 108.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ ((#[[1]] + 1) (#[[2]] + 1) & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 68}]
    Table[DivisorSigma[0, n] Total[Select[Divisors[n], SquareFreeQ]], {n, 68}]
  • PARI
    a(n)={numdiv(n)*sumdiv(n, d, moebius(d)^2*d)} \\ Andrew Howroyd, Jul 24 2018

Formula

a(n) = A000005(n)*A048250(n) = A000005(n)*A000203(A007947(n)).
a(p^k) = (p + 1)*(k + 1) where p is a prime and k > 0.
a(n) = 2^omega(n)*Product_{p|n} (p + 1) if n is a squarefree (A005117), where omega() = A001221.
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 + 2/p^(s-1) - 1/p^(2*s-1)). - Amiram Eldar, Sep 17 2023
From Vaclav Kotesovec, May 06 2025: (Start)
Let f(s) = Product_{p prime} (p^s-p)^2 * (p^(2*s)+2*p^(s+1)-p) / (p^(2*s) * (p^s-1)^2).
Dirichlet g.f.: zeta(s-1)^2 * f(s).
Sum_{k=1..n} a(k) ~ ((2*log(n) + 4*gamma - 1)*f(2) + 2*f'(2)) * n^2/4, where
f(2) = A065463 = Product_{p prime} (1 - 1/(p*(p+1))) = 0.704442200999165592736603350326637210188586431417098049414226842591...,
f'(2) = f(2) * Sum_{p prime} 2*(2*p^2-1)*log(p) / ((p^2-1)*(p^2+p-1)) = f(2) * 1.799151495460164053607059266860868724519705035904425832307664926571...
and gamma is the Euler-Mascheroni constant A001620. (End)

A008335 Number of distinct primes dividing p+1 as p runs through the primes.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 1, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 3, 1, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 3, 2, 3, 3, 3, 2, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 2, 4, 2, 3, 3, 4, 2, 2, 3, 3, 3, 3, 2, 4, 2, 3, 3, 2, 3, 2
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    for i from 1 to 500 do if isprime(i) then print(nops(factorset(i+1))); fi; od;
  • Mathematica
    a[n_] := PrimeNu[Prime[n]+1]; Array[a, 100] (* Amiram Eldar, Sep 10 2024 *)
  • PARI
    a(n) = omega(prime(n)+1); \\ Michel Marcus, Mar 29 2016

Formula

a(n) = A001221(A008864(n)). - Michel Marcus, Mar 29 2016

A123134 a(n) = prime(n)*(prime(n+1) + 1).

Original entry on oeis.org

8, 18, 40, 84, 154, 234, 340, 456, 690, 928, 1178, 1554, 1804, 2064, 2538, 3180, 3658, 4148, 4824, 5254, 5840, 6636, 7470, 8722, 9894, 10504, 11124, 11770, 12426, 14464, 16764, 18078, 19180, 20850, 22648, 23858, 25748, 27384, 29058, 31140, 32578
Offset: 1

Views

Author

Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 30 2006

Keywords

Comments

All terms are even. - Michel Marcus, Apr 02 2017

Examples

			a(1) = 2*(3+1) = 8, a(2) = 3*(5+1) = 18, a(3) = 5*(7+1) = 40, ...
		

Crossrefs

Programs

  • Magma
    [NthPrime(n)*(NthPrime(n+1) +1): n in [1..40]]; // G. C. Greubel, Aug 04 2021
  • Mathematica
    a[n_]:=Prime[n](Prime[n+1]+1); Array[a, 80] (* Giovanni Resta, Apr 02 2017 *)
    #[[1]](#[[2]]+1)&/@Partition[Prime[Range[50]],2,1] (* Harvey P. Dale, Jan 06 2019 *)
  • PARI
    for(n=1,100,print1(prime(n)*(prime(n+1)+1),","))
    
  • Python
    from sympy import prime
    def a(n): return prime(n) * (prime(n + 1) + 1) # Indranil Ghosh, Apr 02 2017
    

Formula

a(n) = A000040(n)*A008864(n+1). - Zak Seidov, Apr 02 2017
a(n) = A286624(n) - 1. - Antti Karttunen, Jul 06 2017

A135731 a(1) = 3; thereafter a(n+1) = a(n) + nextprime(a(n)) - prevprime(a(n)).

Original entry on oeis.org

3, 6, 8, 12, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 54, 60, 62, 68, 72, 74, 80, 84, 90, 98, 102, 104, 108, 110, 114, 128, 132, 138, 140, 150, 152, 158, 164, 168, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234, 240, 242, 252, 258, 264, 270, 272, 278
Offset: 1

Views

Author

Enoch Haga, Nov 26 2007

Keywords

Comments

Essentially the same as A008864. [From R. J. Mathar, Oct 28 2008]
Only the first term is prime, the rest are even, and between any pair of adjacent terms a(n) and a(n+1), there is just one prime, namely prime(n+2). - David James Sycamore, Dec 07 2018

Examples

			a(1) = 3, so a(2) = 3 + (5-2)  = 6,
a(3) = 6 + (7-5) = 8,
a(4) = 8 + (11-7) = 12; etc.
		

Crossrefs

Programs

  • Mathematica
    NestList[#+NextPrime[#]-NextPrime[#,-1]&,3,60] (* Harvey P. Dale, Oct 13 2024 *)

Formula

a(n+1) = a(n) + A001223(n+1) for n>1. - David James Sycamore, Dec 07 2018

Extensions

Definition corrected and entry revised by David James Sycamore, Dec 07 2018

A136151 Composites n with exactly two distinct prime divisors and of the form n=1+(any prime).

Original entry on oeis.org

6, 12, 14, 18, 20, 24, 38, 44, 48, 54, 62, 68, 72, 74, 80, 98, 104, 108, 152, 158, 164, 192, 194, 200, 212, 224, 242, 272, 278, 284, 314, 332, 338, 368, 384, 398, 422, 432, 458, 464, 488, 500, 524, 542, 548, 578, 608, 614, 632, 648, 662, 674, 692, 734, 752, 758
Offset: 1

Views

Author

Enoch Haga, Dec 16 2007

Keywords

Crossrefs

Programs

  • Maple
    isA136151 := proc(n) if isprime(n-1) then if nops(numtheory[factorset](n)) =2 then true; else false ; fi ; else false ; fi ; end: for i from 1 to 200 do n := ithprime(i)+1 ; if isA136151( n) then printf("%d, ",n) ; fi ; od: # R. J. Mathar, Feb 01 2008
  • Mathematica
    Select[Range[800],PrimeNu[#]==2&&PrimeQ[#-1]&] (* Harvey P. Dale, Jun 22 2018 *)

Formula

A008864 INTERSECT A007774. - R. J. Mathar, Feb 01 2008

Extensions

Edited by R. J. Mathar, Feb 01 2008

A136152 Composites one larger than a prime and with exactly three distinct prime factors.

Original entry on oeis.org

30, 42, 60, 84, 90, 102, 110, 114, 132, 138, 140, 150, 168, 174, 180, 182, 198, 228, 230, 234, 240, 252, 258, 264, 270, 282, 294, 308, 312, 318, 348, 350, 354, 360, 374, 380, 402, 410, 434, 440, 444, 450, 468, 480, 492, 504, 522, 558, 564, 572, 588, 594, 600
Offset: 1

Views

Author

Enoch Haga, Dec 16 2007

Keywords

Examples

			a(0)=30 because 30 follows the prime 29 and has three factors 2, 3 and 5.
		

Crossrefs

Programs

  • Maple
    isA008864 := proc(n) if n -prevprime(n) = 1 then true ; else false ; fi ; end: isA033992 := proc(n) if nops(numtheory[factorset](n)) = 3 then true ; else false ; fi ; end: isA136152 := proc(n) isA008864(n) and isA033992(n) ; end: for n from 1 do p := ithprime(n) ; if isA136152(p+1) then print(p+1) ; fi ; od: # R. J. Mathar, Feb 20 2008
  • Mathematica
    Select[Prime[Range[110]]+1,PrimeNu[#]==3&] (* Harvey P. Dale, Apr 08 2012 *)

Formula

Find primes followed by N with exactly three prime factors, without repetition.
Equals A008864 INTERSECT A033992. - R. J. Mathar, Feb 20 2008

Extensions

Edited by R. J. Mathar, Feb 20 2008

A136153 Composites one larger than a prime, with exactly four distinct prime factors.

Original entry on oeis.org

390, 420, 462, 510, 570, 660, 770, 798, 840, 858, 930, 1020, 1050, 1092, 1110, 1218, 1230, 1260, 1290, 1302, 1320, 1410, 1428, 1430, 1482, 1554, 1560, 1610, 1638, 1710, 1722, 1848, 1890, 1914, 1932, 1950, 1974, 1980, 2030, 2040, 2070, 2090, 2100, 2130
Offset: 1

Views

Author

Enoch Haga, Dec 16 2007

Keywords

Examples

			a(0)=390 because 30 follows the prime 29 and has four prime factors 2, 3, 5 and 13.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[400]]+1,PrimeNu[#]==4&] (* Harvey P. Dale, Aug 15 2021 *)
  • PARI
    isok(n) = (omega(n)==4) && isprime(n-1); \\ Michel Marcus, Jun 08 2014

Formula

Equals A008864 INTERSECT A033993. - R. J. Mathar, Feb 20 2008

Extensions

Edited by R. J. Mathar, Feb 20 2008

A136155 Composites one larger than a prime and with exactly two or three distinct prime factors.

Original entry on oeis.org

6, 12, 14, 18, 20, 24, 30, 38, 42, 44, 48, 54, 60, 62, 68, 72, 74, 80, 84, 90, 98, 102, 104, 108, 110, 114, 132, 138, 140, 150, 152, 158, 164, 168, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234, 240, 242, 252, 258, 264, 270, 272, 278, 282, 284, 294
Offset: 1

Views

Author

Enoch Haga, Dec 16 2007

Keywords

Examples

			a(1)=6, which is one larger than the prime 5 and has 2 distinct prime factors (namely 2 and 3).
60 is in the sequence because 59 is prime and 60 = 2^2*3*5 has three distinct prime factors.
		

Crossrefs

Programs

  • Maple
    A001221 := proc(n) nops(numtheory[factorset](n)) ; end: isA136155 := proc(n) if isprime(n-1) then RETURN( A001221(n)=2 or A001221(n)= 3) ; else RETURN(false) ; fi ; end: for n from 1 to 300 do if isA136155(n) then printf("%d,",n) ; fi ; od: # R. J. Mathar, May 03 2008
  • Mathematica
    okQ[n_] := PrimeQ[n-1] && (PrimeNu[n]==2 || PrimeNu[n]==3);
    Select[Range[6, 300, 2], okQ] (* Jean-François Alcover, Feb 04 2023 *)

Formula

Union of A136151 and A136152. Subset of A008864. - R. J. Mathar, Apr 24 2008
A136151 UNION A136152. - R. J. Mathar, May 03 2008

Extensions

Edited by R. J. Mathar and Jens Kruse Andersen, Apr 24 2008

A160696 Largest k such that k^2 divides prime(n)+1.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 3, 2, 2, 1, 4, 1, 1, 2, 4, 3, 2, 1, 2, 6, 1, 4, 2, 3, 7, 1, 2, 6, 1, 1, 8, 2, 1, 2, 5, 2, 1, 2, 2, 1, 6, 1, 8, 1, 3, 10, 2, 4, 2, 1, 3, 4, 11, 6, 1, 2, 3, 4, 1, 1, 2, 7, 2, 2, 1, 1, 2, 13, 2, 5, 1, 6, 4, 1, 2, 8, 1, 1, 1, 1, 2, 1, 12, 1, 2, 2, 15, 1, 1, 4, 6, 4, 2, 2, 10, 6, 1, 3, 2, 1, 2, 3, 2
Offset: 1

Views

Author

Reinhard Zumkeller, May 24 2009

Keywords

Comments

A160697 and A160698 give record values and where they occur.

Crossrefs

Programs

  • PARI
    a(n) = core(prime(n)+1, 1)[2]; \\ Michel Marcus, Nov 06 2022

Formula

a(A049097(n)) = 1; a(A049098(n)) > 1;
a(n) = A000188(A008864(n)).

A175216 The first nonprimes after the primes.

Original entry on oeis.org

4, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 54, 60, 62, 68, 72, 74, 80, 84, 90, 98, 102, 104, 108, 110, 114, 128, 132, 138, 140, 150, 152, 158, 164, 168, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234, 240, 242, 252, 258, 264, 270, 272
Offset: 1

Views

Author

Jaroslav Krizek, Mar 06 2010

Keywords

Comments

Essentially the same as A135731, A055670, A028815 and A008864. [R. J. Mathar, Mar 13 2010]

Crossrefs

Programs

  • Magma
    [n eq 1 select 4 else NthPrime(n) +1: n in [1..100]]; // G. C. Greubel, Aug 06 2024
    
  • Mathematica
    Table[Prime[n] +1 +Boole[n==1], {n,100}] (* G. C. Greubel, Aug 06 2024 *)
  • SageMath
    def A175216(n): return nth_prime(n) +1 +int(n==1)
    [A175216(n) for n in range(1,101)] # G. C. Greubel, Aug 06 2024

Formula

a(1) = 4, for n >= 2, a(n) = A008864(n) = A000040(n) + 1.
Previous Showing 101-110 of 200 results. Next