cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 200 results. Next

A175224 a(n) = prime(n) + 8.

Original entry on oeis.org

10, 11, 13, 15, 19, 21, 25, 27, 31, 37, 39, 45, 49, 51, 55, 61, 67, 69, 75, 79, 81, 87, 91, 97, 105, 109, 111, 115, 117, 121, 135, 139, 145, 147, 157, 159, 165, 171, 175, 181, 187, 189, 199, 201, 205, 207, 219, 231, 235, 237, 241, 247, 249, 259, 265, 271, 277, 279
Offset: 1

Views

Author

Jaroslav Krizek, Mar 06 2010

Keywords

Comments

a(n) = A000040(n) + 8 = A008864(n) + 7 = A052147(n) + 6 = A113395(n) + 5 = A175221(n) + 4 = A175222(n) + 3 = A139049(n) + 2 = A175223(n) + 1 = A140353(n) - 1 = A175225(n) - 2.

Crossrefs

Programs

Extensions

More terms from Vincenzo Librandi, Mar 14 2010

A175225 a(n) = prime(n) + 10.

Original entry on oeis.org

12, 13, 15, 17, 21, 23, 27, 29, 33, 39, 41, 47, 51, 53, 57, 63, 69, 71, 77, 81, 83, 89, 93, 99, 107, 111, 113, 117, 119, 123, 137, 141, 147, 149, 159, 161, 167, 173, 177, 183, 189, 191, 201, 203, 207, 209, 221, 233, 237, 239, 243, 249, 251, 261, 267, 273, 279, 281
Offset: 1

Views

Author

Jaroslav Krizek, Mar 06 2010

Keywords

Comments

a(n) = A000040(n) + 10 = A008864(n) + 9 = A052147(n) + 8 = A113395(n) + 7 = A175221(n) + 6 = A175222(n) + 5 = A139049(n) + 4 = A175223(n) + 3 = A175224(n) + 2 = A140353(n) + 1.

Crossrefs

Programs

Extensions

More terms from Vincenzo Librandi, Mar 14 2010

A239708 Numbers of the form m = 2^i + 2^j, where i > j >= 0, such that m - 1 is prime.

Original entry on oeis.org

3, 6, 12, 18, 20, 24, 48, 68, 72, 80, 132, 192, 258, 264, 272, 384, 1032, 1040, 1088, 1152, 1280, 2064, 2112, 4100, 4112, 4128, 4160, 5120, 6144, 8448, 16448, 20480, 32772, 32784, 32832, 33024, 33792, 65538, 65540, 65544, 65552, 65600, 66048, 73728, 81920, 262148, 262152, 262272, 262400, 263168, 266240, 294912, 524352, 528384, 786432
Offset: 1

Views

Author

Hieronymus Fischer, Mar 27 2014

Keywords

Comments

Complement of the disjunction of A079696 with A187813. This means that a number m is a term if and only if b = 2 is the only base for which the base-b digital sum of m is b.

Examples

			a(1) = 3, since 3 = 2^1 + 2^0.
a(3) = 12, since 12 = 2^3 + 2^2.
		

Crossrefs

Programs

  • Python
    from itertools import islice
    from sympy import isprime
    def A239708_gen(): # generator of terms
        yield (n:=3)
        while True:
            n = n^((a:=-n&n+1)|(a>>1)) if n&1 else ((n&~(b:=n+(a:=n&-n)))>>a.bit_length())^b
            if isprime(n-1):
                yield n
    A239708_list = list(islice(A239708_gen(),30)) # Chai Wah Wu, Mar 24 2025
  • Smalltalk
    A239708
    "Answers the n-th term of A239708.
      Usage: n A239708
      Answer: a(n)"
      | a b i k m p q terms |
      terms := OrderedCollection new.
      b := 2.
      p := 1.
      k := 0.
      m := 0.
      [k < self] whileTrue:
             [m := m + 1.
             p := b * p.
             q := 1.
             i := 0.
             [i < m and: [k < self]] whileTrue:
                       [i := i + 1.
                       a := p + q.
                       (a - 1) isPrime
                            ifTrue:
                                [k := k + 1.
                                terms add: a].
                       q := b * q]].
      ^terms at: self
    -----------------
    
  • Smalltalk
    A239708inv
      "Answers a kind of inverse of A239708.
      Usage: n A239708inv
      Answer: max ( k | A239708(k) < n)"
      | k |
      k := 1.
      [k A239708 < self] whileTrue: [k := k + 1].
      ^k - 1
    

Formula

A239703(a(n)) = 1.

A286623 Square array A(n,k) = A276943(n,k)/A002110(n-1), read by descending antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

1, 3, 1, 4, 4, 1, 5, 6, 6, 1, 7, 7, 10, 8, 1, 9, 16, 11, 14, 12, 1, 10, 19, 36, 15, 22, 14, 1, 11, 21, 41, 78, 23, 26, 18, 1, 13, 22, 45, 85, 144, 27, 34, 20, 1, 15, 31, 46, 91, 155, 222, 35, 38, 24, 1, 16, 34, 71, 92, 165, 235, 324, 39, 46, 30, 1, 17, 36, 76, 155, 166, 247, 341, 438, 47, 58, 32, 1, 18, 37, 80, 162, 287, 248, 357, 457, 668, 59, 62, 38, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 28 2017

Keywords

Examples

			The top left 12 X 12 corner of the array:
  1,  3,  4,  5,    7,    9,   10,   11,   13,   15,   16,   17
  1,  4,  6,  7,   16,   19,   21,   22,   31,   34,   36,   37
  1,  6, 10, 11,   36,   41,   45,   46,   71,   76,   80,   81
  1,  8, 14, 15,   78,   85,   91,   92,  155,  162,  168,  169
  1, 12, 22, 23,  144,  155,  165,  166,  287,  298,  308,  309
  1, 14, 26, 27,  222,  235,  247,  248,  443,  456,  468,  469
  1, 18, 34, 35,  324,  341,  357,  358,  647,  664,  680,  681
  1, 20, 38, 39,  438,  457,  475,  476,  875,  894,  912,  913
  1, 24, 46, 47,  668,  691,  713,  714, 1335, 1358, 1380, 1381
  1, 30, 58, 59,  900,  929,  957,  958, 1799, 1828, 1856, 1857
  1, 32, 62, 63, 1148, 1179, 1209, 1210, 2295, 2326, 2356, 2357
  1, 38, 74, 75, 1518, 1555, 1591, 1592, 3035, 3072, 3108, 3109
		

Crossrefs

Transpose: A286625.
Row 1: A276155.
Column 1: A000012, Column 2: A008864, Column 3: A100484, Column 4: A072055, Column 5: A023523 (from its second term onward), Column 6: A286624 (= 1 + A123134), Column 11: 2*A123134, Column 13: 3*A006094.
Cf. A276616 (analogous array).

Programs

Formula

A(n,k) = A276943(n, k) / A002110(n-1).

A286625 Square array A(n,k) = A276945(n,k)/A002110(k-1), read by descending antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

1, 1, 3, 1, 4, 4, 1, 6, 6, 5, 1, 8, 10, 7, 7, 1, 12, 14, 11, 16, 9, 1, 14, 22, 15, 36, 19, 10, 1, 18, 26, 23, 78, 41, 21, 11, 1, 20, 34, 27, 144, 85, 45, 22, 13, 1, 24, 38, 35, 222, 155, 91, 46, 31, 15, 1, 30, 46, 39, 324, 235, 165, 92, 71, 34, 16, 1, 32, 58, 47, 438, 341, 247, 166, 155, 76, 36, 17, 1, 38, 62, 59, 668, 457, 357, 248, 287, 162, 80, 37, 18
Offset: 1

Views

Author

Antti Karttunen, Jun 28 2017

Keywords

Examples

			The top left 12 X 12 corner of the array:
   1,  1,  1,   1,   1,   1,   1,   1,    1,    1,    1,    1
   3,  4,  6,   8,  12,  14,  18,  20,   24,   30,   32,   38
   4,  6, 10,  14,  22,  26,  34,  38,   46,   58,   62,   74
   5,  7, 11,  15,  23,  27,  35,  39,   47,   59,   63,   75
   7, 16, 36,  78, 144, 222, 324, 438,  668,  900, 1148, 1518
   9, 19, 41,  85, 155, 235, 341, 457,  691,  929, 1179, 1555
  10, 21, 45,  91, 165, 247, 357, 475,  713,  957, 1209, 1591
  11, 22, 46,  92, 166, 248, 358, 476,  714,  958, 1210, 1592
  13, 31, 71, 155, 287, 443, 647, 875, 1335, 1799, 2295, 3035
  15, 34, 76, 162, 298, 456, 664, 894, 1358, 1828, 2326, 3072
  16, 36, 80, 168, 308, 468, 680, 912, 1380, 1856, 2356, 3108
  17, 37, 81, 169, 309, 469, 681, 913, 1381, 1857, 2357, 3109
		

Crossrefs

Transpose: A286623.
Column 1: A276155.
Row 1: A000012, Row 2: A008864, Row 3: A100484, Row 4: A072055, Row 5: A023523 (from its second term onward), Row 6: A286624.
Cf. A276617 (analogous array).

Programs

Formula

A(n,k) = A276945(n, k) / A002110(k-1).

A299374 Numbers k such that k * 11^k - 1 is prime.

Original entry on oeis.org

2, 8, 252, 1184, 1308
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(6) > 500000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), this sequence (b=11), A299375 (b=12), A299376 (b=13), A299377 (b=14), A299378 (b=15), A299379 (b=16), A299380 (b=17), A299381 (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*11^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*11^n-1] &]
  • PARI
    for(n=1, 10000, if(ispseudoprime(n*11^n-1), print1(n", ")))
    

A299375 Numbers k such that k * 12^k - 1 is prime.

Original entry on oeis.org

1, 6, 43, 175, 821, 910, 1157, 13748, 27032, 71761, 229918
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(12) > 500000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), this sequence (b=12), A299376 (b=13), A299377 (b=14), A299378 (b=15), A299379 (b=16), A299380 (b=17), A299381 (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*12^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*12^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*12^n-1), print1(n", ")))
    

A299376 Numbers k such that k * 13^k - 1 is prime.

Original entry on oeis.org

2, 6, 563528
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(4) > 570008.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), this sequence (b=13), A299377 (b=14), A299378 (b=15), A299379 (b=16), A299380 (b=17), A299381 (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*13^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*13^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*13^n-1), print1(n", ")))
    

A299377 Numbers k such that k * 14^k - 1 is prime.

Original entry on oeis.org

1, 3, 7, 98, 104, 128, 180, 834, 1633, 8000, 28538, 46605, 131941, 147684, 433734
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(16) > 500000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), A299376 (b=13), this sequence (b=14), A299378 (b=15), A299379 (b=16), A299380 (b=17), A299381 (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*14^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*14^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*14^n-1), print1(n", ")))
    

A299378 Numbers k such that k * 15^k - 1 is prime.

Original entry on oeis.org

2, 10, 14, 2312, 16718, 26906, 27512, 41260, 45432, 162454, 217606
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(12) > 500000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), A299376 (b=13), A299377 (b=14), this sequence (b=15), A299379 (b=16), A299380 (b=17), A299381 (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*15^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*15^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*15^n-1), print1(n", ")))
    
Previous Showing 71-80 of 200 results. Next