cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A067410 Triangle with columns built from certain power sequences.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 8, 12, 4, 1, 16, 48, 24, 5, 1, 32, 192, 144, 40, 6, 1, 64, 768, 864, 320, 60, 7, 1, 128, 3072, 5184, 2560, 600, 84, 8, 1, 256, 12288, 31104, 20480, 6000, 1008, 112, 9, 1, 512, 49152, 186624, 163840, 60000, 12096, 1568, 144, 10, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Examples

			Triangle starts:
  1;
  2,  1;
  4,  3, 1;
  8, 12, 4, 1;
  ...
		

Crossrefs

Cf. A009998 (triangle built from powers of (m+1)), A067402.

Programs

  • Mathematica
    A[n_,m_]:=If[n==m,1,(m+2)(2(m+1))^(n-m-1)]; Flatten[Table[A[n,m],{n,0,9},{m,0,n}]] (* Stefano Spezia, Sep 30 2022 *)

Formula

a(n, m) = 1 if n = m; a(n, m) = (m+2)*(2*(m+1))^(n-m-1) if n > m >= 0.
G.f. for column m: (x^m)*(1-m*x)/(1-2*(m+1)*x).

A067417 Triangle with columns built from certain power sequences.

Original entry on oeis.org

1, 3, 1, 9, 4, 1, 27, 24, 5, 1, 81, 144, 45, 6, 1, 243, 864, 405, 72, 7, 1, 729, 5184, 3645, 864, 105, 8, 1, 2187, 31104, 32805, 10368, 1575, 144, 9, 1, 6561, 186624, 295245, 124416, 23625, 2592, 189, 10, 1, 19683, 1119744, 2657205, 1492992, 354375, 46656, 3969, 240, 11, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Examples

			Triangle starts:
   1;
   3,  1;
   9,  4, 1;
  27, 24, 5, 1;
  ...
		

Crossrefs

Cf. A009998 (triangle built from powers of (m+1)), A067402, A067410.

Programs

  • Mathematica
    A[n_,m_]:=If[n==m,1,(m+3)(3(m+1))^(n-m-1)]; Flatten[Table[A[n,m],{n,0,9},{m,0,n}]] (* Stefano Spezia, Sep 30 2022 *)

Formula

a(n, m) = 1 if n = m; a(n, m) = (m+3)*(3*(m+1))^(n-m-1) if n > m >= 0.
G.f. for column m: (x^m)*(1-2*m*x)/(1-3*(m+1)*x).

A009999 Triangle in which j-th entry in i-th row is (i+1-j)^j, 0<=j<=i.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 9, 8, 1, 1, 5, 16, 27, 16, 1, 1, 6, 25, 64, 81, 32, 1, 1, 7, 36, 125, 256, 243, 64, 1, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of ways of placing 1..k in n boxes such that each box contains at most one number, and numbers in adjacent boxes are in increasing order. This can be proved by observing that there are n-(k-1) ways of extending each of T(n-1,k-1). - Jimin Park, Apr 16 2023
The n-th diagonal consists of n^k. This can also be generated as the Akiyama-Tanigawa algorithm applied to the sequence binomial(n+k,k). - Shel Kaphan, May 03 2024

Examples

			Triangle begins
  1
  1  1
  1  2  1
  1  3  4   1
  1  4  9   8    1
  1  5 16  27   16    1
  1  6 25  64   81   32     1
  1  7 36 125  256  243    64     1
  1  8 49 216  625 1024   729   128    1
  1  9 64 343 1296 3125  4096  2187  256   1
  1 10 81 512 2401 7776 15625 16384 6561 512 1
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 24.

Crossrefs

Row sums give A026898.
T(2n,n) gives A000169(n+1).
Cf. A009998 (mirrored).

Programs

  • Haskell
    a009999 n k = (n + 1 - k) ^ k
    a009999_row n = a009999_tabl !! n
    a009999_tabl = [1] : map snd (iterate f ([1,1], [1,1])) where
       f (us@(u:_), vs) = (us', 1 : zipWith (*) us' vs)
                          where us' = (u + 1) : us
    -- Reinhard Zumkeller, Feb 02 2014
  • Maple
    A009999 := proc(i,j) (i+1-j)^j ; end proc: # R. J. Mathar, Jan 16 2011
  • Mathematica
    Table[(i+1-j)^j, {i, 0, 10}, {j, 0, i}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)

Formula

T(n,0) = 1; T(n,k) = (n-k+1)*T(n-1,k-1) for k=1..n. - Reinhard Zumkeller, Feb 02 2014
T(n,k) = Sum_{i=0..k} binomial(k,i)*T(n-1-i,k-i). - Jimin Park, Apr 16 2023

Extensions

T(10,8) corrected by Reinhard Zumkeller, Feb 02 2014

A292741 Number A(n,k) of partitions of n with k sorts of part 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 3, 2, 1, 4, 10, 11, 5, 2, 1, 5, 17, 31, 24, 7, 4, 1, 6, 26, 69, 95, 50, 11, 4, 1, 7, 37, 131, 278, 287, 104, 15, 7, 1, 8, 50, 223, 657, 1114, 865, 212, 22, 8, 1, 9, 65, 351, 1340, 3287, 4460, 2599, 431, 30, 12, 1, 10, 82, 521, 2459, 8042, 16439, 17844, 7804, 870, 42, 14
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2017

Keywords

Examples

			A(1,3) = 3: 1a, 1b, 1c.
A(2,3) = 10: 2, 1a1a, 1a1b, 1a1c, 1b1a, 1b1b, 1b1c, 1c1a, 1c1b, 1c1c.
A(3,2) = 11: 3, 21a, 21b, 1a1a1a, 1a1a1b, 1a1b1a, 1a1b1b, 1b1a1a, 1b1a1b, 1b1b1a, 1b1b1b.
Square array A(n,k) begins:
  1,  1,   1,    1,     1,     1,      1,      1, ...
  0,  1,   2,    3,     4,     5,      6,      7, ...
  1,  2,   5,   10,    17,    26,     37,     50, ...
  1,  3,  11,   31,    69,   131,    223,    351, ...
  2,  5,  24,   95,   278,   657,   1340,   2459, ...
  2,  7,  50,  287,  1114,  3287,   8042,  17215, ...
  4, 11, 104,  865,  4460, 16439,  48256, 120509, ...
  4, 15, 212, 2599, 17844, 82199, 289540, 843567, ...
		

Crossrefs

Columns k=0-2 give: A002865, A000041, A090764.
Rows n=0-2 give: A000012, A001477, A002522, A071568.
Main diagonal gives A292462.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i<2, k^n,
          add(b(n-i*j, i-1, k), j=0..iquo(n, i)))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[0, , ] = 1; b[n_, i_, k_] := b[n, i, k] = If[i < 2, k^n, Sum[b[n - i*j, i - 1, k], {j, 0, Quotient[n, i]}]];
    A[n_, k_] := b[n, n, k];
    Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 19 2018, translated from Maple *)

Formula

G.f. of column k: 1/(1-k*x) * 1/Product_{j>=2} (1-x^j).
A(n,k) = Sum_{j=0..n} A002865(j) * k^(n-j).

A343657 Sum of number of divisors of x^y for each x >= 1, y >= 0, x + y = n.

Original entry on oeis.org

1, 2, 4, 7, 12, 18, 27, 39, 56, 77, 103, 134, 174, 223, 283, 356, 445, 547, 666, 802, 959, 1139, 1344, 1574, 1835, 2128, 2454, 2815, 3213, 3648, 4126, 4653, 5239, 5888, 6608, 7407, 8298, 9288, 10385, 11597, 12936, 14408, 16025, 17799, 19746, 21882, 24221
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2021

Keywords

Examples

			The a(7) = 27 divisors:
  1  32  81  64  25  6  1
     16  27  32  5   3
     8   9   16  1   2
     4   3   8       1
     2   1   4
     1       2
             1
		

Crossrefs

Antidiagonal row sums (row sums of the triangle) of A343656.
Dominated by A343661.
A000005(n) counts divisors of n.
A000312(n) = n^n.
A007318(n,k) counts k-sets of elements of {1..n}.
A009998(n,k) = n^k (as an array, offset 1).
A059481(n,k) counts k-multisets of elements of {1..n}.
A343658(n,k) counts k-multisets of divisors of n.

Programs

  • Mathematica
    Total/@Table[DivisorSigma[0,k^(n-k)],{n,30},{k,n}]

Formula

a(n) = Sum_{k=1..n} A000005(k^(n-k)).

A067425 Triangle with columns built from certain power sequences.

Original entry on oeis.org

1, 4, 1, 16, 5, 1, 64, 40, 6, 1, 256, 320, 72, 7, 1, 1024, 2560, 864, 112, 8, 1, 4096, 20480, 10368, 1792, 160, 9, 1, 16384, 163840, 124416, 28672, 3200, 216, 10, 1, 65536, 1310720, 1492992, 458752, 64000
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Comments

The fifth column (m=4) gives [1, 8, 160, 3200, 64000, 1280000, 25600000, ...].

Examples

			Triangle starts:
   1;
   4,  1;
  16,  5,  1;
  64, 40,  6,  1;
  ...
		

Crossrefs

Columns 0..3 are A000302 (powers of 4), A067412, A067419, A067404.
Columns 5..8 are A067426, A067427, A067428, A067429.

Programs

  • Mathematica
    A067425[n_, m_] := If[n == m, 1, (m + 4)*(4*(m + 1))^(n - m - 1)];
    Table[A067425[n, m], {n, 0, 10}, {m, 0, n}] (* Paolo Xausa, Oct 16 2024 *)

Formula

T(n,m) = 1 if n = m; T(n,m) = (m+4)*(4*(m+1))^(n-m-1) if n > m >= 0, else 0.
G.f. for column m: (x^m)*(1-3*m*x)/(1-4*(m+1)*x).

A119502 Triangle read by rows, T(n,k) = (n-k)!, for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 2, 1, 1, 24, 6, 2, 1, 1, 120, 24, 6, 2, 1, 1, 720, 120, 24, 6, 2, 1, 1, 5040, 720, 120, 24, 6, 2, 1, 1, 40320, 5040, 720, 120, 24, 6, 2, 1, 1, 362880, 40320, 5040, 720, 120, 24, 6, 2, 1, 1, 3628800, 362880, 40320, 5040, 720, 120, 24, 6, 2, 1, 1, 39916800
Offset: 0

Views

Author

Joseph Biberstine (jrbibers(AT)indiana.edu), May 26 2006

Keywords

Comments

The reciprocal of each entry in a lower triangular readout of the exponential of a matrix whose entry {j+1,j} equals one (and all other entries are zero). Note all said entries are unit fractions (all numerators are one).
Denominators of unfinished fractional coefficients for polynomials A152650/A152656 = A009998/A119052. - Paul Curtz, Dec 13 2008
Multiplying the n-th diagonal by b_n with b_0 = 1 and then beheading the triangle provides a Gram matrix whose determinant is related to the reciprocal of e.g.f.s as presented in A133314. - Tom Copeland, Dec 04 2016

Examples

			Triangle starts:
   1;
   1, 1;
   2, 1, 1;
   6, 2, 1, 1;
  24, 6, 2, 1, 1;
		

Crossrefs

Cf. A025581.
Cf. A133314.

Programs

  • Magma
    [[Factorial(n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jun 18 2015
  • Mathematica
    Table[Gamma[Binomial[1 + Floor[(1/2) + Sqrt[2*(1 + n)]], 2] - n], {n, 0, 77}]

Formula

T(n,k) = A025581(n,k)!.
a(n) = Gamma(binomial(1 + floor((1/2) + sqrt(2*(1 + n))), 2) - n).

Extensions

Name edited by Peter Luschny, Jun 17 2015

A343935 Number of ways to choose a multiset of n divisors of n.

Original entry on oeis.org

1, 3, 4, 15, 6, 84, 8, 165, 55, 286, 12, 6188, 14, 680, 816, 4845, 18, 33649, 20, 53130, 2024, 2300, 24, 2629575, 351, 3654, 4060, 237336, 30, 10295472, 32, 435897, 7140, 7770, 8436, 177232627, 38, 10660, 11480, 62891499, 42, 85900584, 44, 1906884, 2118760
Offset: 1

Views

Author

Gus Wiseman, May 05 2021

Keywords

Examples

			The a(1) = 1 through a(5) = 6 multisets:
  {1}  {1,1}  {1,1,1}  {1,1,1,1}  {1,1,1,1,1}
       {1,2}  {1,1,3}  {1,1,1,2}  {1,1,1,1,5}
       {2,2}  {1,3,3}  {1,1,1,4}  {1,1,1,5,5}
              {3,3,3}  {1,1,2,2}  {1,1,5,5,5}
                       {1,1,2,4}  {1,5,5,5,5}
                       {1,1,4,4}  {5,5,5,5,5}
                       {1,2,2,2}
                       {1,2,2,4}
                       {1,2,4,4}
                       {1,4,4,4}
                       {2,2,2,2}
                       {2,2,2,4}
                       {2,2,4,4}
                       {2,4,4,4}
                       {4,4,4,4}
		

Crossrefs

Diagonal n = k of A343658.
Choosing n divisors of n - 1 gives A343936.
The version for chains of divisors is A343939.
A000005 counts divisors.
A000312 = n^n.
A007318 counts k-sets of elements of {1..n}.
A009998 = n^k (as an array, offset 1).
A059481 counts k-multisets of elements of {1..n}.
A146291 counts divisors of n with k prime factors (with multiplicity).
A253249 counts nonempty chains of divisors of n.
Strict chains of divisors:
- A067824 counts strict chains of divisors starting with n.
- A074206 counts strict chains of divisors from n to 1.
- A251683 counts strict length k + 1 chains of divisors from n to 1.
- A334996 counts strict length-k chains of divisors from n to 1.
- A337255 counts strict length-k chains of divisors starting with n.
- A337256 counts strict chains of divisors of n.
- A343662 counts strict length-k chains of divisors.

Programs

  • Mathematica
    multchoo[n_,k_]:=Binomial[n+k-1,k];
    Table[multchoo[DivisorSigma[0,n],n],{n,25}]
  • Python
    from math import comb
    from sympy import divisor_count
    def A343935(n): return comb(divisor_count(n)+n-1,n) # Chai Wah Wu, Jul 05 2024

Formula

a(n) = ((sigma(n), n)) = binomial(sigma(n) + n - 1, n) where sigma = A000005 and binomial = A007318.

A179927 Triangle of centered orthotopic numbers.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 5, 5, 2, 1, 9, 13, 7, 2, 1, 17, 35, 25, 9, 2, 1, 33, 97, 91, 41, 11, 2, 1, 65, 275, 337, 189, 61, 13, 2, 1, 129, 793, 1267, 881, 341, 85, 15, 2
Offset: 0

Views

Author

Peter Luschny, Aug 02 2010

Keywords

Comments

T(n, k) = [x^k] series[ H(n - k, x) ]
Here H(n,x) = E(n,x)*(1+x)/(1-x)^(n+1) where E(n,x) are the Eulerian polynomials, E(0,x) = 1 and E(n,x) = sum_{k=0^{n-1}} W_{n,k} x^k for n > 0. W_{n,k} as in DLMF Table 26.14.1.

Examples

			1
1, 2
1, 3, 2
1, 5, 5, 2
1, 9, 13, 7, 2
1, 17, 35, 25, 9, 2
1, 33, 97, 91, 41, 11, 2
		

Crossrefs

Cf. Row sums in A179928, triangle of orthotopic numbers is A009998.

Programs

  • Maple
    E := (n,x) -> `if`(n=0,1,x*(1-x)*diff(E(n-1,x),x)+E(n-1,x)*(1+(n-1)*x));
    H := (n,x) -> E(n,x)*(1+x)/(1-x)^(n+1);
    A179927 := (n,k) -> coeff(series(H(n-k,x),x,18),x,k);
    seq(print(seq(A179927(n,k),k=0..n)),n=0..6);
  • Mathematica
    e[0, ] = 1; e[n, x_] := e[n, x] = x(1-x) D[e[n-1, x], x] + e[n-1, x] (1 + (n-1)x);
    h[n_, x_] := e[n, x] (1+x)/(1-x)^(n+1);
    T[n_, k_] := SeriesCoefficient[h[n-k, x], {x, 0, k}];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] (* Jean-François Alcover, Jun 17 2019, from Maple *)

A343661 Sum of numbers of y-multisets of divisors of x for each x >= 1, y >= 0, x + y = n.

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 46, 70, 105, 155, 223, 316, 443, 619, 865, 1210, 1690, 2354, 3263, 4497, 6157, 8368, 11280, 15078, 19989, 26296, 34356, 44626, 57693, 74321, 95503, 122535, 157101, 201377, 258155, 330994, 424398, 544035, 696995, 892104, 1140298, 1455080
Offset: 1

Views

Author

Gus Wiseman, Apr 30 2021

Keywords

Examples

			The a(5) = 12 multisets of divisors:
  {1,1,1,1}  {1,1,1}  {1,1}  {1}  {}
             {1,1,2}  {1,3}  {2}
             {1,2,2}  {3,3}  {4}
             {2,2,2}
		

Crossrefs

Antidiagonal sums of the array A343658 (or row sums of the triangle).
Dominates A343657.
A000005 counts divisors.
A007318 counts k-sets of elements of {1..n}.
A059481 counts k-multisets of elements of {1..n}.
A343656 counts divisors of powers.

Programs

  • Mathematica
    multchoo[n_,k_]:=Binomial[n+k-1,k];
    Table[Sum[multchoo[DivisorSigma[0,k],n-k],{k,n}],{n,10}]

Formula

a(n) = Sum_{k=1..n} binomial(sigma(k) + n - k - 1, n - k).
Previous Showing 11-20 of 24 results. Next