A067410
Triangle with columns built from certain power sequences.
Original entry on oeis.org
1, 2, 1, 4, 3, 1, 8, 12, 4, 1, 16, 48, 24, 5, 1, 32, 192, 144, 40, 6, 1, 64, 768, 864, 320, 60, 7, 1, 128, 3072, 5184, 2560, 600, 84, 8, 1, 256, 12288, 31104, 20480, 6000, 1008, 112, 9, 1, 512, 49152, 186624, 163840, 60000, 12096, 1568, 144, 10, 1
Offset: 0
Triangle starts:
1;
2, 1;
4, 3, 1;
8, 12, 4, 1;
...
-
A[n_,m_]:=If[n==m,1,(m+2)(2(m+1))^(n-m-1)]; Flatten[Table[A[n,m],{n,0,9},{m,0,n}]] (* Stefano Spezia, Sep 30 2022 *)
A067417
Triangle with columns built from certain power sequences.
Original entry on oeis.org
1, 3, 1, 9, 4, 1, 27, 24, 5, 1, 81, 144, 45, 6, 1, 243, 864, 405, 72, 7, 1, 729, 5184, 3645, 864, 105, 8, 1, 2187, 31104, 32805, 10368, 1575, 144, 9, 1, 6561, 186624, 295245, 124416, 23625, 2592, 189, 10, 1, 19683, 1119744, 2657205, 1492992, 354375, 46656, 3969, 240, 11, 1
Offset: 0
Triangle starts:
1;
3, 1;
9, 4, 1;
27, 24, 5, 1;
...
-
A[n_,m_]:=If[n==m,1,(m+3)(3(m+1))^(n-m-1)]; Flatten[Table[A[n,m],{n,0,9},{m,0,n}]] (* Stefano Spezia, Sep 30 2022 *)
A009999
Triangle in which j-th entry in i-th row is (i+1-j)^j, 0<=j<=i.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 9, 8, 1, 1, 5, 16, 27, 16, 1, 1, 6, 25, 64, 81, 32, 1, 1, 7, 36, 125, 256, 243, 64, 1, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1
Offset: 0
Triangle begins
1
1 1
1 2 1
1 3 4 1
1 4 9 8 1
1 5 16 27 16 1
1 6 25 64 81 32 1
1 7 36 125 256 243 64 1
1 8 49 216 625 1024 729 128 1
1 9 64 343 1296 3125 4096 2187 256 1
1 10 81 512 2401 7776 15625 16384 6561 512 1
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 24.
-
a009999 n k = (n + 1 - k) ^ k
a009999_row n = a009999_tabl !! n
a009999_tabl = [1] : map snd (iterate f ([1,1], [1,1])) where
f (us@(u:_), vs) = (us', 1 : zipWith (*) us' vs)
where us' = (u + 1) : us
-- Reinhard Zumkeller, Feb 02 2014
-
A009999 := proc(i,j) (i+1-j)^j ; end proc: # R. J. Mathar, Jan 16 2011
-
Table[(i+1-j)^j, {i, 0, 10}, {j, 0, i}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
A292741
Number A(n,k) of partitions of n with k sorts of part 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 3, 2, 1, 4, 10, 11, 5, 2, 1, 5, 17, 31, 24, 7, 4, 1, 6, 26, 69, 95, 50, 11, 4, 1, 7, 37, 131, 278, 287, 104, 15, 7, 1, 8, 50, 223, 657, 1114, 865, 212, 22, 8, 1, 9, 65, 351, 1340, 3287, 4460, 2599, 431, 30, 12, 1, 10, 82, 521, 2459, 8042, 16439, 17844, 7804, 870, 42, 14
Offset: 0
A(1,3) = 3: 1a, 1b, 1c.
A(2,3) = 10: 2, 1a1a, 1a1b, 1a1c, 1b1a, 1b1b, 1b1c, 1c1a, 1c1b, 1c1c.
A(3,2) = 11: 3, 21a, 21b, 1a1a1a, 1a1a1b, 1a1b1a, 1a1b1b, 1b1a1a, 1b1a1b, 1b1b1a, 1b1b1b.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
1, 2, 5, 10, 17, 26, 37, 50, ...
1, 3, 11, 31, 69, 131, 223, 351, ...
2, 5, 24, 95, 278, 657, 1340, 2459, ...
2, 7, 50, 287, 1114, 3287, 8042, 17215, ...
4, 11, 104, 865, 4460, 16439, 48256, 120509, ...
4, 15, 212, 2599, 17844, 82199, 289540, 843567, ...
-
b:= proc(n, i, k) option remember; `if`(n=0 or i<2, k^n,
add(b(n-i*j, i-1, k), j=0..iquo(n, i)))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[0, , ] = 1; b[n_, i_, k_] := b[n, i, k] = If[i < 2, k^n, Sum[b[n - i*j, i - 1, k], {j, 0, Quotient[n, i]}]];
A[n_, k_] := b[n, n, k];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 19 2018, translated from Maple *)
A343657
Sum of number of divisors of x^y for each x >= 1, y >= 0, x + y = n.
Original entry on oeis.org
1, 2, 4, 7, 12, 18, 27, 39, 56, 77, 103, 134, 174, 223, 283, 356, 445, 547, 666, 802, 959, 1139, 1344, 1574, 1835, 2128, 2454, 2815, 3213, 3648, 4126, 4653, 5239, 5888, 6608, 7407, 8298, 9288, 10385, 11597, 12936, 14408, 16025, 17799, 19746, 21882, 24221
Offset: 1
The a(7) = 27 divisors:
1 32 81 64 25 6 1
16 27 32 5 3
8 9 16 1 2
4 3 8 1
2 1 4
1 2
1
Antidiagonal row sums (row sums of the triangle) of
A343656.
A007318(n,k) counts k-sets of elements of {1..n}.
A009998(n,k) = n^k (as an array, offset 1).
A059481(n,k) counts k-multisets of elements of {1..n}.
A343658(n,k) counts k-multisets of divisors of n.
Cf.
A000169,
A000272,
A002064,
A002109,
A048691,
A062319,
A066959,
A143773,
A146291,
A176029,
A251683,
A282935,
A326358,
A327527,
A334996.
-
Total/@Table[DivisorSigma[0,k^(n-k)],{n,30},{k,n}]
A067425
Triangle with columns built from certain power sequences.
Original entry on oeis.org
1, 4, 1, 16, 5, 1, 64, 40, 6, 1, 256, 320, 72, 7, 1, 1024, 2560, 864, 112, 8, 1, 4096, 20480, 10368, 1792, 160, 9, 1, 16384, 163840, 124416, 28672, 3200, 216, 10, 1, 65536, 1310720, 1492992, 458752, 64000
Offset: 0
Triangle starts:
1;
4, 1;
16, 5, 1;
64, 40, 6, 1;
...
-
A067425[n_, m_] := If[n == m, 1, (m + 4)*(4*(m + 1))^(n - m - 1)];
Table[A067425[n, m], {n, 0, 10}, {m, 0, n}] (* Paolo Xausa, Oct 16 2024 *)
A119502
Triangle read by rows, T(n,k) = (n-k)!, for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 6, 2, 1, 1, 24, 6, 2, 1, 1, 120, 24, 6, 2, 1, 1, 720, 120, 24, 6, 2, 1, 1, 5040, 720, 120, 24, 6, 2, 1, 1, 40320, 5040, 720, 120, 24, 6, 2, 1, 1, 362880, 40320, 5040, 720, 120, 24, 6, 2, 1, 1, 3628800, 362880, 40320, 5040, 720, 120, 24, 6, 2, 1, 1, 39916800
Offset: 0
Joseph Biberstine (jrbibers(AT)indiana.edu), May 26 2006
Triangle starts:
1;
1, 1;
2, 1, 1;
6, 2, 1, 1;
24, 6, 2, 1, 1;
-
[[Factorial(n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jun 18 2015
-
Table[Gamma[Binomial[1 + Floor[(1/2) + Sqrt[2*(1 + n)]], 2] - n], {n, 0, 77}]
A343935
Number of ways to choose a multiset of n divisors of n.
Original entry on oeis.org
1, 3, 4, 15, 6, 84, 8, 165, 55, 286, 12, 6188, 14, 680, 816, 4845, 18, 33649, 20, 53130, 2024, 2300, 24, 2629575, 351, 3654, 4060, 237336, 30, 10295472, 32, 435897, 7140, 7770, 8436, 177232627, 38, 10660, 11480, 62891499, 42, 85900584, 44, 1906884, 2118760
Offset: 1
The a(1) = 1 through a(5) = 6 multisets:
{1} {1,1} {1,1,1} {1,1,1,1} {1,1,1,1,1}
{1,2} {1,1,3} {1,1,1,2} {1,1,1,1,5}
{2,2} {1,3,3} {1,1,1,4} {1,1,1,5,5}
{3,3,3} {1,1,2,2} {1,1,5,5,5}
{1,1,2,4} {1,5,5,5,5}
{1,1,4,4} {5,5,5,5,5}
{1,2,2,2}
{1,2,2,4}
{1,2,4,4}
{1,4,4,4}
{2,2,2,2}
{2,2,2,4}
{2,2,4,4}
{2,4,4,4}
{4,4,4,4}
Choosing n divisors of n - 1 gives
A343936.
The version for chains of divisors is
A343939.
A007318 counts k-sets of elements of {1..n}.
A009998 = n^k (as an array, offset 1).
A059481 counts k-multisets of elements of {1..n}.
A146291 counts divisors of n with k prime factors (with multiplicity).
A253249 counts nonempty chains of divisors of n.
Strict chains of divisors:
-
A067824 counts strict chains of divisors starting with n.
-
A074206 counts strict chains of divisors from n to 1.
-
A251683 counts strict length k + 1 chains of divisors from n to 1.
-
A334996 counts strict length-k chains of divisors from n to 1.
-
A337255 counts strict length-k chains of divisors starting with n.
-
A337256 counts strict chains of divisors of n.
-
A343662 counts strict length-k chains of divisors.
-
multchoo[n_,k_]:=Binomial[n+k-1,k];
Table[multchoo[DivisorSigma[0,n],n],{n,25}]
-
from math import comb
from sympy import divisor_count
def A343935(n): return comb(divisor_count(n)+n-1,n) # Chai Wah Wu, Jul 05 2024
A179927
Triangle of centered orthotopic numbers.
Original entry on oeis.org
1, 1, 2, 1, 3, 2, 1, 5, 5, 2, 1, 9, 13, 7, 2, 1, 17, 35, 25, 9, 2, 1, 33, 97, 91, 41, 11, 2, 1, 65, 275, 337, 189, 61, 13, 2, 1, 129, 793, 1267, 881, 341, 85, 15, 2
Offset: 0
1
1, 2
1, 3, 2
1, 5, 5, 2
1, 9, 13, 7, 2
1, 17, 35, 25, 9, 2
1, 33, 97, 91, 41, 11, 2
-
E := (n,x) -> `if`(n=0,1,x*(1-x)*diff(E(n-1,x),x)+E(n-1,x)*(1+(n-1)*x));
H := (n,x) -> E(n,x)*(1+x)/(1-x)^(n+1);
A179927 := (n,k) -> coeff(series(H(n-k,x),x,18),x,k);
seq(print(seq(A179927(n,k),k=0..n)),n=0..6);
-
e[0, ] = 1; e[n, x_] := e[n, x] = x(1-x) D[e[n-1, x], x] + e[n-1, x] (1 + (n-1)x);
h[n_, x_] := e[n, x] (1+x)/(1-x)^(n+1);
T[n_, k_] := SeriesCoefficient[h[n-k, x], {x, 0, k}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] (* Jean-François Alcover, Jun 17 2019, from Maple *)
A343661
Sum of numbers of y-multisets of divisors of x for each x >= 1, y >= 0, x + y = n.
Original entry on oeis.org
1, 2, 4, 7, 12, 19, 30, 46, 70, 105, 155, 223, 316, 443, 619, 865, 1210, 1690, 2354, 3263, 4497, 6157, 8368, 11280, 15078, 19989, 26296, 34356, 44626, 57693, 74321, 95503, 122535, 157101, 201377, 258155, 330994, 424398, 544035, 696995, 892104, 1140298, 1455080
Offset: 1
The a(5) = 12 multisets of divisors:
{1,1,1,1} {1,1,1} {1,1} {1} {}
{1,1,2} {1,3} {2}
{1,2,2} {3,3} {4}
{2,2,2}
Antidiagonal sums of the array
A343658 (or row sums of the triangle).
A007318 counts k-sets of elements of {1..n}.
A059481 counts k-multisets of elements of {1..n}.
Cf.
A000169,
A000312,
A009998,
A062319,
A067824,
A143773,
A146291,
A176029,
A184389,
A285572,
A326077,
A327527,
A334996,
A343652,
A343657.
-
multchoo[n_,k_]:=Binomial[n+k-1,k];
Table[Sum[multchoo[DivisorSigma[0,k],n-k],{k,n}],{n,10}]
Comments