cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A176016 Decimal expansion of (3+sqrt(15))/6.

Original entry on oeis.org

1, 1, 4, 5, 4, 9, 7, 2, 2, 4, 3, 6, 7, 9, 0, 2, 8, 1, 4, 1, 9, 6, 5, 4, 4, 2, 3, 3, 2, 9, 7, 0, 6, 6, 6, 0, 1, 8, 0, 5, 4, 8, 6, 9, 5, 0, 8, 8, 1, 9, 3, 1, 8, 0, 4, 4, 3, 1, 2, 6, 2, 2, 9, 4, 3, 5, 2, 2, 4, 7, 1, 8, 1, 9, 8, 9, 4, 9, 6, 5, 0, 5, 5, 8, 6, 5, 4, 7, 8, 9, 6, 1, 4, 3, 1, 1, 2, 2, 5, 2, 9, 8, 6, 0, 5
Offset: 1

Views

Author

Klaus Brockhaus, Apr 06 2010

Keywords

Comments

Continued fraction expansion of (3+sqrt(15))/6 is A010687.

Examples

			(3+sqrt(15))/6 = 1.14549722436790281419...
		

Crossrefs

Cf. A010472 (sqrt(15)), A176020 ((3+sqrt(15))/3), A010687 (repeat 1, 6).

Programs

  • Mathematica
    RealDigits[(3+Sqrt[15])/6,10,120][[1]] (* Harvey P. Dale, May 01 2012 *)

Formula

Equals 1/2+A140246. - R. J. Mathar, Mar 17 2025

A176020 Decimal expansion of (3+sqrt(15))/3.

Original entry on oeis.org

2, 2, 9, 0, 9, 9, 4, 4, 4, 8, 7, 3, 5, 8, 0, 5, 6, 2, 8, 3, 9, 3, 0, 8, 8, 4, 6, 6, 5, 9, 4, 1, 3, 3, 2, 0, 3, 6, 1, 0, 9, 7, 3, 9, 0, 1, 7, 6, 3, 8, 6, 3, 6, 0, 8, 8, 6, 2, 5, 2, 4, 5, 8, 8, 7, 0, 4, 4, 9, 4, 3, 6, 3, 9, 7, 8, 9, 9, 3, 0, 1, 1, 1, 7, 3, 0, 9, 5, 7, 9, 2, 2, 8, 6, 2, 2, 4, 5, 0, 5, 9, 7, 2, 1, 0
Offset: 1

Views

Author

Klaus Brockhaus, Apr 06 2010

Keywords

Comments

Continued fraction expansion of (3+sqrt(15))/3 is A010693.
a(n) = A020817(n-1) for n > 1; a(1) = 2.

Examples

			(3+sqrt(15))/3 = 2.29099444873580562839...
		

Crossrefs

Cf. A010472 (decimal expansion of sqrt(15)), A176016 (decimal expansion of (3+sqrt(15))/6), A010693 (repeat 2, 3), A020817 (decimal expansion of 1/sqrt(60)).

Programs

  • Mathematica
    RealDigits[(3+Sqrt[15])/3,10,120][[1]] (* Harvey P. Dale, May 20 2013 *)

A041022 Numerators of continued fraction convergents to sqrt(15).

Original entry on oeis.org

3, 4, 27, 31, 213, 244, 1677, 1921, 13203, 15124, 103947, 119071, 818373, 937444, 6443037, 7380481, 50725923, 58106404, 399364347, 457470751, 3144188853, 3601659604, 24754146477, 28355806081
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[15],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011 *)
    Numerator[Convergents[Sqrt[15], 30]] (* Vincenzo Librandi, Oct 28 2013 *)
    a0[n_] := (-((4-Sqrt[15])^n*(3+Sqrt[15]))+(-3+Sqrt[15])*(4+Sqrt[15])^n)/2 // Simplify
    a1[n_] := ((4-Sqrt[15])^n+(4+Sqrt[15])^n)/2 // Simplify
    Flatten[MapIndexed[{a0[#], a1[#]} &,Range[20]]] (* Gerry Martens, Jul 11 2015 *)

Formula

G.f.: (3+4*x+3*x^2-x^3)/(1-8*x^2+x^4).
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = (-((4-sqrt(15))^n*(3+sqrt(15)))+(-3+sqrt(15))*(4+sqrt(15))^n)/2.
a1(n) = ((4-sqrt(15))^n+(4+sqrt(15))^n)/2. (End)

A176058 Decimal expansion of (3+sqrt(15))/2.

Original entry on oeis.org

3, 4, 3, 6, 4, 9, 1, 6, 7, 3, 1, 0, 3, 7, 0, 8, 4, 4, 2, 5, 8, 9, 6, 3, 2, 6, 9, 9, 8, 9, 1, 1, 9, 9, 8, 0, 5, 4, 1, 6, 4, 6, 0, 8, 5, 2, 6, 4, 5, 7, 9, 5, 4, 1, 3, 2, 9, 3, 7, 8, 6, 8, 8, 3, 0, 5, 6, 7, 4, 1, 5, 4, 5, 9, 6, 8, 4, 8, 9, 5, 1, 6, 7, 5, 9, 6, 4, 3, 6, 8, 8, 4, 2, 9, 3, 3, 6, 7, 5, 8, 9, 5, 8, 1, 5
Offset: 1

Views

Author

Klaus Brockhaus, Apr 07 2010

Keywords

Comments

Continued fraction expansion of (3+sqrt(15))/2 is A176059.

Examples

			(3+sqrt(15))/2 = 3.43649167310370844258...
		

Crossrefs

Cf. A010472 (decimal expansion of sqrt(15)), A176059 (repeat 3, 2).

Programs

  • Mathematica
    First[RealDigits[(3 + Sqrt[15])/2, 10, 100]] (* Paolo Xausa, Jun 18 2024 *)

Formula

Equals 1.5 + A088543. [R. J. Mathar, Apr 12 2010]

A177187 Union of A057080 and A001090.

Original entry on oeis.org

1, 1, 9, 8, 71, 63, 559, 496, 4401, 3905, 34649, 30744, 272791, 242047, 2147679, 1905632, 16908641, 15003009, 133121449, 118118440, 1048062951, 929944511, 8251382159, 7321437648, 64962994321, 57641556673, 511452572409, 453811015736, 4026657584951, 3572846569215
Offset: 1

Views

Author

Mark Dols, May 04 2010

Keywords

Comments

Column sums of shifted Pascal-like array:
1..1..10..10..100..100.1000.1000
......-1..-2..-30..-40.-500.-600
................1....3...60..100
.........................-1...-4
-------------------------------- +
1..1...9...8...71...63..559..496
Decimal expansion of ratio n/(n+1) is accumulation of Catalan numbers; (5 +/- sqrt(15)).

Crossrefs

Formula

For n odd a(n) = 10*a(n-1) - a(n-2), for n even a(n) = a(n-1) - a(n-2); with a(0) = 0, a(1) = 1.
G.f.: x*(1+x+x^2) / ( 1-8*x^2+x^4 ). - R. J. Mathar, Nov 11 2011

A017949 Powers of sqrt(15) rounded down.

Original entry on oeis.org

1, 3, 15, 58, 225, 871, 3375, 13071, 50625, 196069, 759375, 2941046, 11390625, 44115700, 170859375, 661735513, 2562890625, 9926032708, 38443359375, 148890490631, 576650390625, 2233357359474, 8649755859375
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010472 (sqrt(15)).

Programs

Formula

a(n) = floor(sqrt(15^n)). - Vincenzo Librandi, Jun 24 2011

A171535 Decimal expansion of 2*sqrt(2/15).

Original entry on oeis.org

7, 3, 0, 2, 9, 6, 7, 4, 3, 3, 4, 0, 2, 2, 1, 4, 8, 4, 6, 0, 9, 2, 9, 3, 0, 4, 3, 7, 3, 4, 4, 0, 2, 8, 4, 5, 2, 7, 0, 3, 2, 6, 2, 5, 9, 9, 9, 7, 3, 1, 1, 0, 0, 5, 6, 3, 5, 8, 5, 9, 2, 6, 6, 3, 0, 9, 9, 9, 1, 0, 3, 6, 1, 6, 3, 6, 3, 0, 3, 1, 1, 7, 3, 4, 4, 7, 7, 9, 1, 4, 8, 8, 5, 1, 6, 0, 8, 3, 4, 3, 5, 2, 9, 6, 9
Offset: 0

Views

Author

R. J. Mathar, Dec 11 2009

Keywords

Comments

The absolute value of the Clebsch-Gordan coupling coefficient = <3/2 1 ; -1/2 1 | 3/2 1/2>.

Examples

			sqrt(8/15) = 0.73029674334022148460929304... = 2*0.365148371..
		

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt(8/15); // G. C. Greubel, Oct 02 2018
  • Mathematica
    RealDigits[2*Sqrt[2/15], 10, 100][[1]] (* G. C. Greubel, Oct 02 2018 *)
  • PARI
    default(realprecision, 100); sqrt(8/15) \\ G. C. Greubel, Oct 02 2018
    

Formula

A176403 Decimal expansion of (15+4*sqrt(15))/5.

Original entry on oeis.org

6, 0, 9, 8, 3, 8, 6, 6, 7, 6, 9, 6, 5, 9, 3, 3, 5, 0, 8, 1, 4, 3, 4, 1, 2, 3, 1, 9, 8, 2, 5, 9, 1, 9, 6, 8, 8, 6, 6, 6, 3, 3, 7, 3, 6, 4, 2, 3, 3, 2, 7, 2, 6, 6, 1, 2, 7, 0, 0, 5, 9, 0, 1, 2, 8, 9, 0, 7, 8, 6, 4, 7, 3, 5, 4, 9, 5, 8, 3, 2, 2, 6, 8, 1, 5, 4, 2, 9, 9, 0, 1, 4, 8, 6, 9, 3, 8, 8, 1, 4, 3, 3, 3, 0, 4
Offset: 1

Views

Author

Klaus Brockhaus, Apr 17 2010

Keywords

Comments

Continued fraction expansion of (15+4*sqrt(15))/5 is A010726.

Examples

			(15+4*sqrt(15))/5 = 6.09838667696593350814...
		

Crossrefs

Cf. A010472 (decimal expansion of sqrt(15)), A010726 (repeat 6, 10).

A277091 a(n) = ((1 + sqrt(15))^n - (1 - sqrt(15))^n)/sqrt(15).

Original entry on oeis.org

0, 2, 4, 36, 128, 760, 3312, 17264, 80896, 403488, 1939520, 9527872, 46209024, 225808256, 1098542848, 5358401280, 26096402432, 127210422784, 619770479616, 3020486878208, 14717760471040, 71722337236992, 349493321068544, 1703099363454976, 8299105221869568, 40441601532108800
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 29 2016

Keywords

Comments

Number of zeros in substitution system {0 -> 1111111, 1 -> 1001} at step n from initial string "1" (see example).

Examples

			Evolution from initial string "1": 1 -> 1001 -> 1001111111111111111001 -> ...
Therefore, number of zeros at step n:
a(0) = 0;
a(1) = 2;
a(2) = 4, etc.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 14}, {0, 2}, 26]
  • PARI
    concat(0, Vec(2*x/(1-2*x-14*x^2) + O(x^99))) \\ Altug Alkan, Oct 01 2016

Formula

O.g.f.: 2*x/(1 - 2*x - 14*x^2).
E.g.f.: 2*sinh(sqrt(15)*x)*exp(x)/sqrt(15).
a(n) = 2*a(n-1) + 14*a(n-2).
Lim_{n->infinity} a(n+1)/a(n) = 1 + sqrt(15) = 1 + A010472.

A176533 Decimal expansion of (15+4*sqrt(15))/3.

Original entry on oeis.org

1, 0, 1, 6, 3, 9, 7, 7, 7, 9, 4, 9, 4, 3, 2, 2, 2, 5, 1, 3, 5, 7, 2, 3, 5, 3, 8, 6, 6, 3, 7, 6, 5, 3, 2, 8, 1, 4, 4, 4, 3, 8, 9, 5, 6, 0, 7, 0, 5, 5, 4, 5, 4, 4, 3, 5, 4, 5, 0, 0, 9, 8, 3, 5, 4, 8, 1, 7, 9, 7, 7, 4, 5, 5, 9, 1, 5, 9, 7, 2, 0, 4, 4, 6, 9, 2, 3, 8, 3, 1, 6, 9, 1, 4, 4, 8, 9, 8, 0, 2, 3, 8, 8, 8, 4
Offset: 2

Views

Author

Klaus Brockhaus, Apr 24 2010

Keywords

Comments

Continued fraction expansion of (15+4*sqrt(15))/3 is A010726 preceded by 10.

Examples

			(15+4*sqrt(15))/3 = 10.16397779494322251357...
		

Crossrefs

Cf. A010472 (decimal expansion of sqrt(15)), A010726 (repeat 6, 10).

Programs

  • Mathematica
    RealDigits[(15+4*Sqrt[15])/3,10,120][[1]] (* Harvey P. Dale, Nov 10 2024 *)
Previous Showing 21-30 of 30 results.