cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 52 results. Next

A272124 a(n) = 12*n^4 + 16*n^3 + 10*n^2 + 4*n + 1.

Original entry on oeis.org

1, 43, 369, 1507, 4273, 9771, 19393, 34819, 58017, 91243, 137041, 198243, 277969, 379627, 506913, 663811, 854593, 1083819, 1356337, 1677283, 2052081, 2486443, 2986369, 3558147, 4208353, 4943851, 5771793, 6699619, 7735057, 8886123, 10161121, 11568643
Offset: 0

Views

Author

Vincenzo Librandi, Apr 21 2016

Keywords

Crossrefs

Programs

  • Magma
    [12*n^4+16*n^3+10*n^2+4*n+1: n in [0..50]];
    
  • Maple
    A272124:=n->(12*n^4 + 16*n^3 + 10*n^2 + 4*n + 1): seq(A272124(n), n=0..60); # Wesley Ivan Hurt, Apr 22 2016
  • Mathematica
    LinearRecurrence[{5, -10, 10, -5, 1}, {1, 43, 369, 1507, 4273}, 50]
    CoefficientList[Series[(1 + 38*x + 164*x^2 + 82*x^3 + 3*x^4)/(1 - x)^5, {x, 0, 30}], x] (* Wesley Ivan Hurt, Apr 22 2016 *)
  • PARI
    vector(100, n, n--; 12*n^4+16*n^3+10*n^2+4*n+1) \\ Altug Alkan, Apr 22 2016

Formula

O.g.f.: (1+38*x+164*x^2+82*x^3+3*x^4)/(1-x)^5.
E.g.f.: (1+42*x+142*x^2+88*x^3+12*x^4)*exp(x).
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>4.
a(n) mod 4 = a(n) mod 8 = A010684(n). - Wesley Ivan Hurt, Apr 22 2016

A124846 Triangle read by rows: T(n,k) = (2 - (-1)^k)*binomial(n,k) (0 <= k <= n).

Original entry on oeis.org

1, 1, 3, 1, 6, 1, 1, 9, 3, 3, 1, 12, 6, 12, 1, 1, 15, 10, 30, 5, 3, 1, 18, 15, 60, 15, 18, 1, 1, 21, 21, 105, 35, 63, 7, 3, 1, 24, 28, 168, 70, 168, 28, 24, 1, 1, 27, 36, 252, 126, 378, 84, 108, 9, 3, 1, 30, 45, 360, 210, 756, 210, 360, 45, 30, 1, 1, 33, 55, 495, 330, 1386, 462, 990
Offset: 0

Views

Author

Gary W. Adamson, Nov 10 2006

Keywords

Examples

			First few rows of the triangle:
  1;
  1,  3;
  1,  6,  1;
  1,  9,  3,  3;
  1, 12,  6, 12,  1;
  1, 15, 10, 30,  5,  3;
  ...
A046055(4) = 16 = sum of row 4 terms (1 + 9 + 3 + 3).
		

Crossrefs

Programs

  • Maple
    T:=(n,k)->(2-(-1)^k)*binomial(n,k): for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form

Extensions

Edited by N. J. A. Sloane, Nov 24 2006

A135247 a(n) = 3*a(n-1) + 2*a(n-2) - 6*a(n-3).

Original entry on oeis.org

1, 3, 11, 33, 103, 309, 935, 2805, 8431, 25293, 75911, 227733, 683263, 2049789, 6149495, 18448485, 55345711, 166037133, 498111911, 1494335733, 4483008223, 13449024669, 40347076055, 121041228165, 363123688591, 1089371065773, 3268113205511, 9804339616533
Offset: 0

Views

Author

Paul Curtz, Feb 15 2008

Keywords

Comments

This sequence interleaves A016133 and 3*A016133, see formulas. - Mathew Englander, Jan 08 2024
a(n) is the number of partitions of n into parts 1 (in three colors) and 2 (in two colors) where the order of colors matters. For example, the a(2)=11 such partitions (using parts 1, 1', 1'', 2, and 2') are 2, 2', 1+1, 1+1', 1+1'', 1'+1, 1'+1', 1'+1'', 1''+1, 1''+1', 1''+1''. For such partitions where the order of colors does not matter see A002624. - Joerg Arndt, Jan 18 2024

Crossrefs

Cf. A016133.

Programs

  • GAP
    a:=[1,3,11];; for n in [4..30] do a[n]:=3*a[n-1]+2*a[n-2]-6*a[n-3]; od; a; # G. C. Greubel, Nov 20 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-3*x-2*x^2+6*x^3) )); // G. C. Greubel, Nov 20 2019
    
  • Maple
    seq(coeff(series(1/(1-3*x-2*x^2+6*x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 20 2019
  • Mathematica
    LinearRecurrence[{3,2,-6},{1,3,11},30] (* Harvey P. Dale, Jun 27 2015 *)
  • PARI
    my(x='x+O('x^30)); Vec(1/(1-3*x-2*x^2+6*x^3)) \\ G. C. Greubel, Nov 20 2019
    
  • Sage
    def A135247_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-3*x-2*x^2+6*x^3) ).list()
    A135247_list(30) # G. C. Greubel, Nov 20 2019
    

Formula

G.f.: 1/((1-3*x)*(1-2*x^2)). - G. C. Greubel, Oct 04 2016
From Mathew Englander, Jan 08 2024: (Start)
a(n) = A010684(n) * A016133(floor(n/2)).
a(n) = 3*a(n-1) + A077957(n) for n >= 1.
a(n) = (A000244(n+2) - A164073(n+3))/7.
(End)

Extensions

More terms from Harvey P. Dale, Jun 27 2015
Dropped two leading terms = 0. - Joerg Arndt, Jan 18 2024

A146562 'Erratic' numbers in A064353 [Kolakoski (1,3)].

Original entry on oeis.org

3, 6, 9, 15, 18, 21, 25, 29, 32, 35, 41, 44, 47, 51, 54, 57, 61, 64, 67, 73, 76, 79, 83, 87, 90, 93, 99, 102, 105, 109, 112, 115, 121, 124, 127, 131, 134, 137, 143, 146, 149, 153, 157, 160, 163, 169, 172, 175, 179, 182, 185, 189, 192, 195, 201, 204, 207, 211
Offset: 1

Views

Author

J. Perry (johnandruth(AT)jrperry.orangehome.co.uk), Nov 01 2008

Keywords

Comments

A064353(n) is generally 1 if n is odd and 3 if n is even. An 'erratic' number breaks this rule.

Examples

			A064353(3) is predicted to be 1 but is 3 so 3 is in the list.
		

Crossrefs

Cf. A064353.
Cf. A010684.

Programs

  • Haskell
    import Data.List (findIndices)
    a146562 n = a146562_list !! (n-1)
    a146562_list = map (+ 1) $
       findIndices (/= 0) $ zipWith (-) a064353_list $ cycle [1, 3]
    -- Reinhard Zumkeller, Aug 03 2013

A173197 a(0)=1, a(n)= 2+2^n/6+4*(-1)^n/3, n>0.

Original entry on oeis.org

1, 1, 4, 2, 6, 6, 14, 22, 46, 86, 174, 342, 686, 1366, 2734, 5462, 10926, 21846, 43694, 87382, 174766, 349526, 699054, 1398102, 2796206, 5592406, 11184814, 22369622, 44739246, 89478486, 178956974, 357913942, 715827886, 1431655766, 2863311534, 5726623062, 11453246126, 22906492246, 45812984494, 91625968982, 183251937966, 366503875926, 733007751854
Offset: 0

Views

Author

Paul Curtz, Feb 12 2010

Keywords

Comments

Linked to Jacobsthal numbers (expansion of tan(x), a.k.a. Zag numbers) A000182=1,2,16,272,...: a(n+1)-2a(n) = -(-1)^n*(A000182(n) mod 10) = (-1,2,-6,2,-6,2,-6,...).
Cf. A173114, related to Euler (or secant, or Zig) numbers, A000364. a(n+1)+A010684=A001045.
First differences: 0,3,-2,4,0,8,8,24,... = 0,A154879 (third differences of A001045).
Main diagonal: A003945; first upper diagonal: -A171449; second: 4*A011782.

Formula

a(n) = A093380(n+4), n>3.
a(n) = +2*a(n-1) +a(n-2) -2*a(n-3), n>3.
G.f.: 1-x*(-1-2*x+7*x^2)/((x-1)*(2*x-1)*(1+x)).
a(2n+2)+a(2n+3)=6*A047689.
a(2n)-a(2n-2) = 3,1,2,4,8,16,... = 3,A000079.

A173261 Array T(n,k) read by antidiagonals: T(n,2k)=1, T(n,2k+1)=n, n>=2, k>=0.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 5, 1, 3, 1, 1, 6, 1, 4, 1, 2, 1, 7, 1, 5, 1, 3, 1, 1, 8, 1, 6, 1, 4, 1, 2, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2, 1, 11, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 12, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2, 1, 13, 1, 11, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 14, 1, 12, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2
Offset: 2

Views

Author

Paul Curtz, Feb 14 2010

Keywords

Comments

One may define another array B(n,0) = -1, B(n,k) = T(n,k-1) + 2*B(n,k-1), n>=2, which also starts in columns k>=0, as follows:
-1, -1, 0, 1, 4, 9, 20, 41, 84, 169, 340, 681, 1364 ...: A084639;
-1, -1, 1, 3, 9, 19, 41, 83, 169, 339, 681, 1363, 2729;
-1, -1, 2, 5, 14, 29, 62, 125, 254, 509, 1022, 2045, 4094;
-1, -1, 3, 7, 19, 39, 83, 167, 339, 679, 1363, 2727, 5459 ...: -A173114;
B(n,k) = (n-1)*A001045(k) - T(n,k).
First differences are B(n,k+1) - B(n,k) = (n-1)*A001045(k).

Examples

			The array T(n,k) starts in row n=2 with columns k>=0 as:
  1,  2, 1,  2, 1,  2, 1,  2, 1,  2, 1,  2 ... A000034;
  1,  3, 1,  3, 1,  3, 1,  3, 1,  3, 1,  3 ... A010684;
  1,  4, 1,  4, 1,  4, 1,  4, 1,  4, 1,  4 ... A010685;
  1,  5, 1,  5, 1,  5, 1,  5, 1,  5, 1,  5 ... A010686;
  1,  6, 1,  6, 1,  6, 1,  6, 1,  6, 1,  6 ... A010687;
  1,  7, 1,  7, 1,  7, 1,  7, 1,  7, 1,  7 ... A010688;
  1,  8, 1,  8, 1,  8, 1,  8, 1,  8, 1,  8 ... A010689;
  1,  9, 1,  9, 1,  9, 1,  9, 1,  9, 1,  9 ... A010690;
  1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10 ... A010691.
Antidiagonal triangle begins as:
  1;
  1,  2;
  1,  3,  1;
  1,  4,  1,  2;
  1,  5,  1,  3,  1;
  1,  6,  1,  4,  1,  2;
  1,  7,  1,  5,  1,  3,  1;
  1,  8,  1,  6,  1,  4,  1,  2;
  1,  9,  1,  7,  1,  5,  1,  3,  1;
  1, 10,  1,  8,  1,  6,  1,  4,  1,  2;
  1, 11,  1,  9,  1,  7,  1,  5,  1,  3,  1;
  1, 12,  1, 10,  1,  8,  1,  6,  1,  4,  1,  2;
  1, 13,  1, 11,  1,  9,  1,  7,  1,  5,  1,  3,  1;
  1, 14,  1, 12,  1, 10,  1,  8,  1,  6,  1,  4,  1,  2;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= (1/2)*((n+3) - (n+1)*(-1)^k);
    Table[T[n-k, k], {n,2,17}, {k,2,n}]//Flatten (* G. C. Greubel, Dec 03 2021 *)
  • Sage
    flatten([[(1/2)*((n-k+3) - (n-k+1)*(-1)^k) for k in (2..n)] for n in (2..17)]) # G. C. Greubel, Dec 03 2021

Formula

From G. C. Greubel, Dec 03 2021: (Start)
T(n, k) = (1/2)*((n+3) - (n+1)*(-1)^k).
Sum_{k=0..n} T(n-k, k) = A024206(n).
Sum_{k=0..floor((n+2)/2)} T(n-2*k+2, k) = (1/16)*(2*n^2 4*n -5*(1 +(-1)^n) + 4*sin(n*Pi/2)) (diagonal sums).
T(2*n-2, n) = A093178(n). (End)

A190906 a(n) = gcd(n! / floor(n/2)!^2, 3^n).

Original entry on oeis.org

1, 1, 1, 3, 3, 3, 1, 1, 1, 9, 9, 9, 3, 3, 3, 9, 9, 9, 1, 1, 1, 3, 3, 3, 1, 1, 1, 27, 27, 27, 9, 9, 9, 27, 27, 27, 3, 3, 3, 9, 9, 9, 3, 3, 3, 27, 27, 27, 9, 9, 9, 27, 27, 27, 1, 1, 1, 3, 3, 3, 1, 1, 1, 9, 9, 9, 3, 3, 3, 9, 9, 9, 1, 1, 1, 3, 3, 3, 1, 1, 1
Offset: 0

Views

Author

Peter Luschny, Jun 30 2011

Keywords

Crossrefs

Cf. A060632.

Programs

Formula

a(n) = gcd(A056040(n), 3^n).
a(n) <= n. - Charles R Greathouse IV, Jun 30 2011
From Johannes W. Meijer, Jun 30 2011: (Start)
a(3*n) = a(3*n+1) = a(3*n+2) = A010684(n)*a(n) for n > 1 with a(0) = a(1) = a(2) = 1.
a(9*n+3) = a(9*n+4) = a(9*n+5) = 3*a(n).
a(9*n) = a(9*n+1) = a(9*n+2) = a(9*n+6) = a(9*n+7) = a(9*n+8) = A010690(n)*a(n). (End)

A235202 Numbers written in an alternating binary-then-quaternary base.

Original entry on oeis.org

1, 10, 11, 20, 21, 30, 31, 100, 101, 110, 111, 120, 121, 130, 131, 1000, 1001, 1010, 1011, 1020, 1021, 1030, 1031, 1100, 1101, 1110, 1111, 1120, 1121, 1130, 1131, 2000, 2001, 2010, 2011, 2020, 2021, 2030, 2031, 2100
Offset: 1

Views

Author

Jeremy Gardiner, Jan 04 2014

Keywords

Comments

Mixed-radix number representation produced by a serial counter with generating sequence (1, 3, 1, 3, ...) = A010684.
Places reading from the right have values (1, 2, 8, 16, 64, 128, ...) = unsigned A094014.
Conjecture: This sequence interpreted as quaternary (base 4) numbers gives A126001 (hence a simplified scheme for computing that sequence).

Examples

			a(15) = 131 since 15 = 1*1+3*2+1*8.
		

Crossrefs

Cf. A109827 (Numbers written in an alternating binary-then-ternary base).

A271390 a(n) = (2*n + 1)^(2*floor((n-1)/2) + 1).

Original entry on oeis.org

1, 3, 5, 343, 729, 161051, 371293, 170859375, 410338673, 322687697779, 794280046581, 952809757913927, 2384185791015625, 4052555153018976267, 10260628712958602189, 23465261991844685929951, 59938945498865420543457, 177482997121587371826171875, 456487940826035155404146917
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2016

Keywords

Comments

All members are odd, therefore:
........................
| k | a(n) mod k |
|.......|..............|
| n+1 | A001477(n) |
| 2*n+2 | A005408(n) |
| 2 | A000012(n) |
| 3 | A080425(n+2)|
| 4 | A010684(n) |
| 6 | A130793(n) |
........................
Final digit of (2*n + 1)^(2*floor((n-1)/2) + 1) gives periodic sequence -> period 20: repeat [1,3,5,3,9,1,3,5,3,9,1,7,5,7,9,1,7,5,7,9], defined by the recurrence relation b(n) = b(n-2) - b(n-4) + b(n+5) + b(n+6) - b(n-7) - b(n-8) + b(n-9) - b(n-11) + b(n-13).

Examples

			a(0) =  1;
a(1) =  3^1 = 3;
a(2) =  5^1 = 5;
a(3) =  7^3 = 343;
a(4) =  9^3 = 729;
a(5) = 11^5 = 161051;
a(6) = 13^5 = 371293;
a(7) = 15^7 = 170859375;
a(8) = 17^7 = 410338673;
...
a(10000) = 1.644...*10^43006;
...
a(100000) = 8.235...*10^530097, etc.
This sequence can be represented as a binary tree:
                                    1
                 ................../ \..................
                3^1                                   5^1
     7^3......../ \......9^3                11^5....../ \.......13^5
     / \                 / \                 / \                 / \
    /   \               /   \               /   \               /   \
   /     \             /     \             /     \             /     \
15^7    17^7        19^9    21^9        23^11   25^11       27^13   29^13
		

Crossrefs

Programs

  • Maple
    A271390:=n->(2*n + 1)^(n - 1/2 - (-1)^n/2): seq(A271390(n), n=0..30); # Wesley Ivan Hurt, Apr 10 2016
  • Mathematica
    Table[(2 n + 1)^(2 Floor[(n - 1)/2] + 1), {n, 0, 18}]
    Table[(2 n + 1)^(n - 1 + (1 + (-1)^(n - 1))/2), {n, 0, 18}]
  • PARI
    a(n) = (2*n + 1)^(2*((n-1)\2) + 1); \\ Altug Alkan, Apr 06 2016
    
  • Python
    for n in range(0,10**3):print((int)((2*n+1)**(2*floor((n-1)/2)+1)))
    # Soumil Mandal, Apr 10 2016

Formula

a(n) = (2*n + 1)^(n - 1 + (1 + (-1)^(n-1))/2).
a(n) = A005408(n)^A109613(n-1).
a(n) = (2*n + 1)^(n - 1/2 - (-1)^n/2). - Wesley Ivan Hurt, Apr 10 2016

A200439 Decimal expansion of constant arising in clubbed binomial approximation for the lightbulb process.

Original entry on oeis.org

2, 7, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3
Offset: 1

Views

Author

Jonathan Vos Post, Nov 17 2011

Keywords

Comments

In the so-called lightbulb process, on days r = 1, ..., n, out of n lightbulbs, all initially off, exactly r bulbs selected uniformly and independent of the past have their status changed from off to on, or vice versa. With W_n the number of bulbs on at the terminal time n and C_n a suitable clubbed binomial distribution, d_{TV}(W_n,C_n) <= 2.7314 sqrt{n} e^{-(n+1)/3} for all n >= 1.
This is the value of the function g_1(9) after eq (16) of the preprint.

Examples

			2.731313... = 1352/495.
		

Crossrefs

Essentially the same as A176040, A153284 and A010684.

Programs

Extensions

Corrected by R. J. Mathar, Nov 29 2011
Previous Showing 41-50 of 52 results. Next