cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A267319 Continued fraction expansion of phi^8, where phi = (1 + sqrt(5))/2.

Original entry on oeis.org

46, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 13 2016

Keywords

Comments

More generally, the ordinary generating function for the continued fraction expansion of phi^(2*k + 1), where phi = (1 + sqrt(5))/2, k = 1, 2, 3,... is floor(phi^(2*k + 1))/(1 - x), and for the continued fraction expansion of phi^(2*k) is (floor(phi^(2*k)) + x - x^2)/(1 - x^2).

Examples

			phi^8 = (47 + 21*sqrt(5))/2 = 46 + 1/(1 + 1/(45 + 1/(1 + 1/(45 + 1/(1 + 1/(45 + 1/...)))))).
		

Crossrefs

Cf. A001622.
Cf. continued fraction expansion of phi^k: A000012 (k = 1), A054977 (k = 2), A010709 (k = 3), A176260 (k = 4, for n>0), A010850 (k = 5), A040071 (k = 6, for n>0), A010868 (k = 7), this sequence (k = 8).

Programs

  • Magma
    [46] cat &cat [[1, 45]^^50]; // Vincenzo Librandi, Jan 13 2016
  • Mathematica
    ContinuedFraction[(47 + 21 Sqrt[5])/2, 82]

Formula

G.f.: (46 + x - x^2)/(1 - x^2).
a(n) = 23 + 22*(-1)^n for n>0. - Bruno Berselli, Jan 18 2016

A267649 a(0) = a(1) = 2 then a(n) = 4 for n>=2.

Original entry on oeis.org

2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

Natan Arie Consigli, Jan 19 2016

Keywords

Comments

Decimal expansion of 101/450.
Also list of smallest n-composites.
A hyperoperator aggregation b[n]c is n-composite if b,c are positive non-right-identity elements.
The identity elements are:
Hyper-0 (zeration): none.
Hyper-1 (addition): 0.
Hyper-2 (multiplication): 1.
Hyper-3 (exponentiation): 1.
Hyper-n (n>2): 1.
For more information on hyperoperations see A054871.
Essentially the same as A255176, A151798, A123932, A113311, A040002 and A010709. - R. J. Mathar, May 25 2023
Continued fraction expansion of 2 + sqrt(1/5) = 2 + sqrt(5)/5. - Elmo R. Oliveira, Aug 06 2024

Examples

			a(0) = 2 because 1 is the smallest non-identity element in zeration and 1[0]1=2;
a(1) = 2 because 1 is the smallest non-identity element in addition and 1[1]1=2;
a(2) = 4 because 2 is the smallest non-identity element in multiplication and 2[2]2=4;
a(3) = 4 because 2 is the smallest non-identity element in exponentiation and 2[2]2=4;
a(4) = 4 because 2 is the smallest non-identity element in titration and 2[2]2=4;
Etc.
		

Crossrefs

Cf. A000027 (1-composites), A002808 (composites), A267647 (3-composites), A097374 (4-composites).

Formula

a(n) = a[n]b where a,b are the positive smallest non-right-identity elements.
From Elmo R. Oliveira, Aug 06 2024: (Start)
G.f.: 4/(1 - x) - 2*(1 + x).
E.g.f.: 4*exp(x) - 2*(1 + x). (End)

A361683 a(n) is the least k such that tau(k) divides sigma_n(k) but not sigma(k), or -1 if no such k exists.

Original entry on oeis.org

4, 64, 4, 7168, 4, 606528, 4, 64, 4, 4194304, 4
Offset: 2

Views

Author

Mohammed Yaseen, Mar 20 2023

Keywords

Comments

a(13) <= 31525197391593472. - David A. Corneth, Mar 20 2023
From Thomas Scheuerle, Mar 22 2023: (Start)
a(17) <= 15211807202738752817960438464512 and a(19) <= 2^190*11.
Conjecture: a(n) is of the form 2^b*p1^c*p2^d*...*pk^j with b > 0 and A020639(n) divides b*(c+1)*(d+1)*...*(j+1). (p1, p2, ..., pk are distinct odd prime numbers). (End)

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = 1, d}, While[Divisible[DivisorSigma[1, k], (d = DivisorSigma[0, k])] || !Divisible[DivisorSigma[n, k], d], k++]; k]; Array[a, 11, 2] (* Amiram Eldar, Mar 20 2023 *)
  • PARI
    isok(k, n) = my(f=factor(k), nd=numdiv(f)); (sigma(f) % nd) && !(sigma(f,n) % nd);
    a(n) = my(k=1); while (!isok(k,n), k++); k; \\ Michel Marcus, Mar 20 2023

Formula

a(2*m) = 4 for m >= 1.
a(6*m-3) = 64 for m >= 1.
From Thomas Scheuerle, Mar 22 2023: (Start)
a(m) <= a(A020639(m)) if a(A020639(m)) <> -1.
Conjecture: For primes q > p, a(q) > a(p). If true, we could replace "<=" with "=" in the above formula. (End)

A376324 (1/6) times obverse convolution (4)**(2^n + 1); see Comments.

Original entry on oeis.org

1, 7, 63, 819, 17199, 636363, 43909047, 5839903251, 1524214748511, 788019024980187, 810871576704612423, 1664719346974569304419, 6827014041942708717422319, 55961034101804383356710748843, 917145387894472038833132462787927
Offset: 0

Views

Author

Clark Kimberling, Sep 20 2024

Keywords

References

  • See A374848 for the definition of obverse convolution and a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    s[n_] := 4; t[n_] := 2^n + 1;
    u[n_] := (1/6) Product[s[k] + t[n - k], {k, 0, n}];
    Table[u[n], {n, 0, 20}]
    (* or *)
    Table[2^(n*(n+1)/2 - 1) * QPochhammer[-5, 1/2, n+1]/3, {n, 0, 15}] (* Vaclav Kotesovec, Sep 20 2024 *)

Formula

a(n) = a(n-1)*A168614(n) for n>=1.
Previous Showing 21-24 of 24 results.