cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A345684 a(n) = n! * Sum_{k=1..n} k/floor(n/k).

Original entry on oeis.org

1, 5, 32, 198, 1584, 12480, 122520, 1214640, 14011200, 166924800, 2274894720, 31135104000, 485667705600, 7710089587200, 133974352512000, 2386854434764800, 46621903994265600, 918384939343872000, 19760215067873280000, 430137075045629952000, 10042411264251125760000
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!*Sum[k/Floor[n/k], {k, 1, n}], {n, 1, 25}]
    Table[n!*Sum[(Floor[n/j] - Floor[n/(1 + j)])*((1 + Floor[n/j] + Floor[n/(1 + j)])/2/j), {j, 1, n}], {n, 1, 25}]
  • PARI
    a(n) = n!*sum(k=1, n, k/(n\k)); \\ Michel Marcus, Jun 23 2021
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, k*(1-x^k)*log(1-x^k))/(1-x))) \\ Seiichi Manyama, Jul 23 2022

Formula

a(n) ~ c * n^2 * n!, where c = Sum_{j>=1} (2*j + 1) / (2*j^3*(j+1)^2) = Pi^2/12 + zeta(3)/2 - 1 = 0.423495...
E.g.f.: -(1/(1-x)) * Sum_{k>0} k * (1 - x^k) * log(1 - x^k). - Seiichi Manyama, Jul 23 2022

A067514 Number of distinct primes of the form floor(n/k) for 1 <= k <= n.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 3, 1, 2, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 5, 6, 2, 3, 4, 4, 4, 5, 4, 5, 3, 4, 5, 6, 4, 5, 5, 6, 4, 5, 4, 5, 5, 5, 6, 7, 3, 4, 4, 5, 6, 7, 5, 6, 5, 6, 7, 8, 4, 5, 5, 5, 4, 5, 6, 7, 7, 8, 7, 8, 4, 5, 5, 5, 5, 6, 7, 8, 6, 6, 7, 8, 4, 5, 6, 7, 7, 8, 5, 6, 7, 8, 9, 10, 6, 7, 5, 6, 5, 6, 6
Offset: 1

Views

Author

Amarnath Murthy, Feb 12 2002

Keywords

Examples

			a(10)=3 as floor(10/k) for k = 1 to 10 is 10,5,3,2,2,1,1,1,1,1, respectively; the 3 primes are 5,3,2.
		

Crossrefs

Cf. A068050.
Cf. A055086 (number of distinct integers with same form). - Michel Marcus, May 04 2019

Programs

  • Mathematica
    a[n_] := Length[Union[Select[Table[Floor[n/i], {i, 1, n}], PrimeQ]]]
    Table[PrimeNu[Product[Floor[n/k], {k, 1, n}]], {n, 1, 100}] (* G. C. Greubel, May 08 2017 *)
  • PARI
    a(n) = #select(x->isprime(x), Set(vector(n, k, n\k))); \\ Michel Marcus, May 04 2019
    
  • PARI
    a(n)=my(s=sqrtint(n+1)); sum(k=1,s,isprime(n\k))+primepi(n\s-1) \\ Charles R Greathouse IV, Nov 05 2021

Formula

a(n) = A001221(A010786(n)). - Enrique Pérez Herrero, Feb 26 2012
a(n) = 4*n^(1/2)/log(n) + O(n^(1/2)/(log(n))^2). - Randell Heyman, Oct 06 2022

Extensions

Edited by Dean Hickerson, Feb 12 2002

A317980 a(n) = Product_{i=1..n} floor(5*i/2).

Original entry on oeis.org

2, 10, 70, 700, 8400, 126000, 2142000, 42840000, 942480000, 23562000000, 636174000000, 19085220000000, 610727040000000, 21375446400000000, 790891516800000000, 31635660672000000000, 1328697748224000000000, 59791398670080000000000, 2810195737493760000000000
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 02 2018

Keywords

Comments

If p > 2 and p is odd, then Product_{i=1..n} floor(p*i/2) ~ (p/2)^n * n! * 2^(1/(2*p)) * sqrt(Pi) / (Gamma(1/2 - 1/(2*p)) * n^(1/(2*p))).

Crossrefs

Programs

  • Mathematica
    Table[Product[Floor[i*5/2], {i, 1, n}], {n, 1, 20}]
    RecurrenceTable[{4 a[n] - 10 a[n - 1] - 5 (n - 1) (5 n - 6) a[n - 2] == 0, a[1] == 2, a[2] == 10}, a, {n, 1, 20}] (* Bruno Berselli, Oct 03 2018 *)
    FoldList[Times,Floor[5*Range[20]/2]] (* Harvey P. Dale, Sep 17 2020 *)

Formula

a(n) ~ (5/2)^n * n! * 2^(1/10) * sqrt(Pi) / (Gamma(2/5) * n^(1/10)).
Recurrence: 4*a(n) - 10*a(n-1) - 5*(n - 1)*(5*n - 6)*a(n-2) = 0, with n >= 3. - Bruno Berselli, Oct 03 2018

A319948 a(n) = Product_{i=1..n} floor(3*i/2).

Original entry on oeis.org

1, 3, 12, 72, 504, 4536, 45360, 544320, 7076160, 106142400, 1698278400, 30569011200, 580811212800, 12197035468800, 268334780313600, 6440034727526400, 161000868188160000, 4347023441080320000, 121716656350248960000, 3651499690507468800000
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Floor[i*3/2], {i, 1, n}], {n, 1, 20}]
    RecurrenceTable[{4 a[n] - 6 a[n - 1] - 3 (n - 1) (3 n - 4) a[n - 2] == 0, a[1] == 1, a[2] == 3}, a, {n, 1, 20}] (* Bruno Berselli, Oct 03 2018 *)

Formula

a(n) ~ (3/2)^n * n! * 2^(1/6) * sqrt(Pi) / (Gamma(1/3) * n^(1/6)).
Recurrence: 4*a(n) - 6*a(n-1) - 3*(n - 1)*(3*n - 4)*a(n-2) = 0, with n >= 3. - Bruno Berselli, Oct 03 2018

A319949 a(n) = Product_{i=1..n} floor(4*i/3).

Original entry on oeis.org

1, 2, 8, 40, 240, 1920, 17280, 172800, 2073600, 26956800, 377395200, 6038323200, 102651494400, 1847726899200, 36954537984000, 776045297664000, 17072996548608000, 409751917166592000, 10243797929164800000, 266338746158284800000
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Floor[i*4/3], {i, 1, n}], {n, 1, 20}]
    RecurrenceTable[{27*(3*n - 7)*a[n] == 54*(2*n - 5)*a[n-1] + 12*(12*n^2 - 42*n + 35)*a[n-2] + 8*(n-2)*(2*n - 5)*(3*n - 4)*(4*n - 9)*a[n-3], a[1]==1, a[2]==2, a[3]==8}, a, {n, 1, 20}]
    FoldList[Times,Floor[4 Range[20]/3]] (* Harvey P. Dale, Mar 21 2024 *)
  • PARI
    a(n) = prod(i=1, n, (4*i)\3); \\ Michel Marcus, Oct 03 2018

Formula

a(n) ~ (4/3)^n * n! * 2*sqrt(Pi) / (3^(1/4) * Gamma(1/4) * n^(1/4)).
Recurrence: 27*(3*n - 7)*a(n) = 54*(2*n - 5)*a(n-1) + 12*(12*n^2 - 42*n + 35)*a(n-2) + 8*(n-2)*(2*n - 5)*(3*n - 4)*(4*n - 9)*a(n-3).

A319950 a(n) = Product_{i=1..n} floor(5*i/3).

Original entry on oeis.org

1, 3, 15, 90, 720, 7200, 79200, 1029600, 15444000, 247104000, 4447872000, 88957440000, 1868106240000, 42966443520000, 1074161088000000, 27928188288000000, 781989272064000000, 23459678161920000000, 727250023019520000000, 23999250759644160000000
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 02 2018

Keywords

Comments

If p > 3 and gcd(p,3)=1 then Product_{i=1..n} floor(i*p/3) ~ (p/3)^n * n! * 2*Pi * 3^(1/p - 1/2) / (c(p) * n^(1/p)), where
c(p) = Gamma(2/3 - 2/(3*p)) * Gamma(1/3 - 1/(3*p)) if mod(p, 3) = 1,
c(p) = Gamma(1/3 - 2/(3*p)) * Gamma(2/3 - 1/(3*p)) if mod(p, 3) = 2.
In general, if q > 1, p > q and gcd(p,q)=1, then Product_{i=1..n} floor(i*p/q) ~ c(p,q) * (p/q)^n * n! / n^((q-1)/(2*p)), where c(p,q) is a constant.

Crossrefs

Programs

  • Mathematica
    Table[Product[Floor[i*5/3], {i, 1, n}], {n, 1, 20}]
    RecurrenceTable[{27*(15*n - 32)*a[n] == 675*(n-2)*a[n-1] + 15*(75*n^2 - 255*n + 194)*a[n-2] + 5*(n-2)*(5*n - 12)*(5*n - 11)*(15*n - 17)*a[n-3], a[1]==1, a[2]==3, a[3]==15}, a, {n, 1, 20}]
  • PARI
    a(n) = prod(i=1, n, (5*i)\3); \\ Michel Marcus, Oct 03 2018

Formula

a(n) ~ (5/3)^n * n! * 2*Pi / (3^(3/10) * Gamma(1/5) * Gamma(3/5) * n^(1/5)).
Recurrence: 27*(15*n - 32)*a(n) = 675*(n-2)*a(n-1) + 15*(75*n^2 - 255*n + 194)*a(n-2) + 5*(n-2)*(5*n - 12)*(5*n - 11)*(15*n - 17)*a(n-3).

A345466 a(n) = Product_{k=1..n} binomial(n, floor(n/k)).

Original entry on oeis.org

1, 1, 2, 9, 96, 1250, 64800, 1764735, 224788480, 22499086176, 6123600000000, 408514437465750, 1308805762115174400, 133962125607455951520, 99335199198879310098432, 113040832521732593994140625, 425230288403106927476736000000, 72623663171934137824096600064000
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 20 2021

Keywords

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else (&*[Binomial(n,Floor(n/j)): j in [1..n]]): n in [0..30]]; // G. C. Greubel, Feb 05 2024
    
  • Mathematica
    Table[Product[Binomial[n, Floor[n/k]], {k, 1, n}], {n, 0, 20}]
    Table[Product[((n + 1)/k - 1)^Floor[n/k], {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 24 2021 *)
  • SageMath
    [product(binomial(n,(n//j)) for j in range(1,n+1)) for n in range(31)] # G. C. Greubel, Feb 05 2024

Formula

log(a(n)) ~ n * log(n)^2 / 2. - Vaclav Kotesovec, Jun 21 2021
a(n) = Product_{k=1..n} ((n+1)/k - 1)^floor(n/k). - Vaclav Kotesovec, Jun 24 2021

A076891 a(n) = [n/1][n/2][n/3] ...[n/n] / n^(tau(n)/2).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 6, 2, 8, 6, 60, 2, 288, 48, 84, 60, 3840, 48, 15552, 144, 4800, 10080, 221760, 96, 331776, 138240, 224640, 25920, 20321280, 4032, 108864000, 345600, 17694720, 36495360, 51701760, 40320, 11287019520, 627056640, 992839680
Offset: 1

Views

Author

Benoit Cloitre, Nov 26 2002

Keywords

Crossrefs

Cf. A000005 (tau), A007955, A010786.

Programs

  • Mathematica
    a[n_] := Product[Floor[n/k], {k, 1, n}] / n^(DivisorSigma[0, n]/2); Array[a, 40] (* Amiram Eldar, Apr 08 2024 *)
  • PARI
    a(n) = prod(k = 1, n, n\k) / n^(numdiv(n)/2); \\ Amiram Eldar, Apr 08 2024

Formula

a(n) = A010786(n)/n^(A000005(n)/2) = A010786(n)/A007955(n).

A308820 a(n) = Product_{k=1..n} ceiling(n/k)!.

Original entry on oeis.org

1, 2, 12, 96, 2880, 34560, 5806080, 92897280, 25082265600, 2006581248000, 794606174208000, 19070548180992000, 208250386136432640000, 5831010811820113920000, 4198327784510482022400000, 3224315738504050193203200000, 14799609239733590386802688000000
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 26 2019

Keywords

Crossrefs

Programs

  • Magma
    [(&*[Factorial(Ceiling(n/(n-j+1))): j in [1..n]]): n in [1..20]]; // G. C. Greubel, Mar 08 2023
    
  • Maple
    seq(mul(ceil(n/k)!, k=1..n), n=1..30); # Ridouane Oudra, Apr 10 2023
  • Mathematica
    a[n_] := Product[Ceiling[n/k]!, {k, 1, n}]; Table[a[n], {n, 1, 17}]
  • PARI
    a(n) = prod(k=1, n, ceil(n/k)!); \\ Michel Marcus, Jun 27 2019
    
  • SageMath
    def A308820(n): return product( factorial(ceil(n/(n-k+1))) for k in range(1,n+1))
    [A308820(n) for n in range(1,21)] # G. C. Greubel, Mar 08 2023

Formula

a(n) = Product_{k=1..n-1} Product_{d|k} (d + 1).
a(n) = Product_{k=1..n-1} (k + 1)^floor((n-1)/k). - Ridouane Oudra, Apr 10 2023
a(n) = A131385(n)*A092143(n-1). - Ridouane Oudra, Sep 20 2024

A309912 a(n) = Product_{p prime, p <= n} floor(n/p).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 6, 6, 8, 12, 30, 30, 48, 48, 112, 210, 240, 240, 324, 324, 480, 840, 1848, 1848, 2304, 2880, 6240, 7020, 10080, 10080, 14400, 14400, 15360, 25344, 53856, 78540, 90720, 90720, 191520, 311220, 374400, 374400, 508032, 508032, 709632, 855360, 1788480, 1788480
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 22 2019

Keywords

Comments

Product of exponents of prime factorization of A048803 (squarefree factorials).

Examples

			A048803(14) = 1816214400 = 2^7 * 3^4 * 5^2 * 7^2 * 11 * 13 so a(14) = 7 * 4 * 2 * 2 * 1 * 1 = 112.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(floor(n/p), p=select(isprime, [$2..n])):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    Table[Product[Floor[n/Prime[k]], {k, 1, PrimePi[n]}], {n, 0, 47}]
  • Python
    from math import prod
    from sympy import primerange
    def A309912(n): return prod(n//p for p in primerange(n)) # Chai Wah Wu, Jun 02 2025

Formula

a(n) = Product_{k=1..A000720(n)} floor(n/A000040(k)).
a(n) = A005361(A048803(n)).
Previous Showing 11-20 of 25 results. Next