cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A164649 Numbers n such that sigma(n)/phi(n) = 36/25.

Original entry on oeis.org

5797, 10153, 20377, 50953, 383719, 405449, 446039, 486421, 608399, 973709, 1321529, 1521311, 3086369, 3228511, 3451877, 3529813, 3859513, 4552373, 4767721, 5827679, 6194321, 6479599, 6724039, 6927893, 7038241, 7919197, 11696111, 15893773, 16894141, 16924873
Offset: 1

Views

Author

M. F. Hasler, Aug 22 2009

Keywords

Comments

A subsequence of A011257. See A164646-A164650 for related sequences.

Crossrefs

Cf. A000010 (=phi), A000203 (=sigma), A068390 (sigma/phi=4), A163667 (sigma/phi=9), A164646-A164650.

Programs

  • PARI
    for( n=1,1e7, sigma(n)==36/25*eulerphi(n) && print1(n","))

Extensions

More terms from Sean A. Irvine, May 17 2010

A164650 Numbers n such that sigma(n)/phi(n) = 49/36.

Original entry on oeis.org

679, 10127, 20273, 672203, 971261, 1133639, 1247129, 1336231, 1646743, 1701089, 2369471, 2674969, 2722499, 2989909, 3160079, 3597659, 4545749, 6333503, 7127861, 9357101, 10574629, 20070061, 52928293, 67931137, 74731807, 79940069, 80704813, 93444911, 128155333
Offset: 1

Views

Author

M. F. Hasler, Aug 22 2009

Keywords

Comments

A subsequence of A011257.
If 7^{k+1}-1 = d*D such that p = 2*7^{k+1}*(d+1)-1 and q = 2*(7^{k+1}+D)-1 are distinct primes, then n = 7^k*p*q is a term of this sequence.
The same theorem holds for sequences of numbers such that sigma/phi=b^2/(b-1)^2 with other primes b (here b=7), cf. A068390, A164646, A164648.

Crossrefs

Cf. A000010 (=phi), A000203 (=sigma), A068390 (sigma/phi=4), A163667 (sigma/phi=9), A164646-A164649.

Programs

  • PARI
    for( n=1,1e7, sigma(n)==49/36*eulerphi(n) && print1(n","))

A165630 Numbers n such that sigma(n)/phi(n) = 25/9, where sigma = A000203, phi = A000010.

Original entry on oeis.org

8721, 10179, 21489, 99813, 203721, 228417, 229653, 250705, 268047, 609957, 1150713, 1343277, 2429283, 2835417, 2835807, 2881197, 3150333, 3230469, 3833181, 4679157, 4885569, 5673291, 6082527, 6302529, 6713637, 6819879, 7096329, 9464121, 10313979, 12168651
Offset: 1

Views

Author

Keywords

Comments

A subsequence of A011257. Contains the product m*n of relatively prime (gcd(m,n)=1) terms (m,n) in A164647 x A164648.

Programs

  • Mathematica
    Select[Range[122*10^5],DivisorSigma[1,#]/EulerPhi[#]==25/9&] (* Harvey P. Dale, Jun 20 2021 *)
  • PARI
    for( i=1,1e7, sigma(i)/eulerphi(i)==25/9 && print1(i", "))

A327830 Numbers m such that the geometric mean of tau(m) and sigma(m) is an integer.

Original entry on oeis.org

1, 7, 17, 22, 30, 31, 71, 94, 97, 115, 119, 127, 138, 154, 164, 165, 199, 210, 214, 217, 232, 241, 260, 265, 318, 337, 343, 374, 382, 449, 497, 510, 513, 517, 527, 577, 647, 658, 668, 679, 682, 705, 745, 759, 805, 862, 881, 889, 894, 930, 966, 967, 996, 1102, 1125
Offset: 1

Views

Author

Bernard Schott, Sep 27 2019

Keywords

Comments

The first 20 terms of this sequence are also the first 20 terms of A144695: m such that sigma(m)/tau(m) is a square. Indeed, if sigma(m)/tau(m) is a square then sigma(m)*tau(m) is also a square, but the converse is false. These counterexamples are in A327831; the first one is a(21) = 232.
The primes p of the form 2*k^2 - 1: 7, 17, 31, 71, ... (A066436) form a subsequence because sigma(p) * tau(p) = (2*k)^2.
Another subsequence consists of the terms m such that sigma(m) and tau(m) are both squares; this occurs when m is the product of two distinct primes p*q, p < q where sigma(m) = (p+1)*(q+1) is a square and tau(m) = 4. The first few terms are 22, 94, 115, 119, 214, ... They are in A256152.

Examples

			sigma(30) = 72 and tau(30) = 8, sigma(30)*tau(30) = 576 = 24^2, hence 30 is a term.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A064840 (tau*sigma).
Cf. A011257 (similar, with phi(m) and sigma(m)), A144695 (sigma(m)/tau(m) is a square), A327831 (sigma(m) * tau(m) is a square but sigma(m)/tau(m) is not an integer).
Subsequences: A066436, A256152.

Programs

  • Magma
    [k:k in [1..1150]| IsSquare(#Divisors(k)*DivisorSigma(1,k))]; // Marius A. Burtea, Sep 27 2019
    
  • Maple
    filter:= s -> issqr(sigma(s)*tau(s)) : select(filter, [$1..2500]);
  • Mathematica
    Select[Range[1000], IntegerQ @ Sqrt[DivisorSigma[0, #] * DivisorSigma[1, #]] &] (* Amiram Eldar, Sep 27 2019 *)
  • PARI
    isok(m) = issquare(numdiv(m)*sigma(m)); \\ Michel Marcus, Sep 27 2019

A341938 Numbers m such that the geometric mean of tau(m) and phi(m) is an integer where phi is the Euler totient function (A000010) and tau is the number of divisors function (A000005).

Original entry on oeis.org

1, 3, 8, 10, 18, 19, 24, 30, 34, 45, 52, 54, 57, 73, 74, 85, 102, 125, 135, 140, 152, 153, 156, 163, 182, 185, 190, 202, 219, 222, 252, 255, 333, 342, 360, 375, 394, 416, 420, 436, 451, 455, 456, 459, 476, 489, 505, 514, 546, 555, 570, 584, 606, 625, 629, 640, 646, 679, 680, 730
Offset: 1

Views

Author

Bernard Schott, Feb 24 2021

Keywords

Comments

The first 11 terms of this sequence are also the first 11 terms of A341939: m such that phi(m)/tau(m) is the square of an integer. Indeed, if phi(m)/tau(m) is a perfect square then phi(m)*tau(m) is also a square, but the converse is false. These counterexamples are in A341940, the first one is a(12) = 54.
If k and q are terms and coprimes, then k*q is another term.
Some subsequences (see examples):
-> The seven terms that satisfy tau(m) = phi(m) form the subsequence A020488.
-> Primes p of the form 2*k^2 + 1 (A090698) form another subsequence because tau(p) = 2 and phi(p) = p-1 = 2*k^2, so tau(p)*phi(p) = (2*k)^2.
-> Cubes p^3 where p is a prime of the form k^2+1 (A002496) form another subset with tau(p^3)*phi(p^3) = (2*k*p)^2.

Examples

			phi(18) = tau(18) = 6, so phi(18)*tau(18) = 6^2.
phi(19) = 18, tau(19) = 2, so phi(19)*tau(19) = 36 = 6^2.
phi(34) = 16, tau(34) = 4, so phi(34)*tau(34) = 16*4 = 64 = 8^2.
phi(125) = 100, tau(125) = 4, so phi(125)*tau(125) = 400 = 20^2.
		

Crossrefs

Similar for: A011257 (phi*sigma square), A327830 (sigma*tau square).
Subsequences: A020488, A090698.
Cf. A000005 (tau), A000010 (phi).

Programs

  • Maple
    with(numtheory): filter:= n -> issqr(phi(n)*tau(n)) : select(filter, [$1..750]);
  • Mathematica
    Select[Range[1000], IntegerQ @ GeometricMean[{DivisorSigma[0, #], EulerPhi[#]}] &] (* Amiram Eldar, Feb 24 2021 *)
  • PARI
    isok(m) = issquare(numdiv(m)*eulerphi(m)); \\ Michel Marcus, Feb 24 2021

A015705 Geometric mean of phi(n) and sigma(n) is an integer, n odd.

Original entry on oeis.org

1, 51, 105, 405, 477, 595, 679, 1023, 1455, 1463, 1485, 1715, 1731, 2651, 2945, 3135, 3567, 4381, 5797, 5859, 8245, 8255, 8721, 9639, 9809, 10127, 10153, 10179, 10295, 11935, 12369, 17765, 17955, 19125, 19875, 20195, 20213, 20273
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A011257.

Programs

  • PARI
    isok(n) = (n%2) && issquare(sigma(n)*eulerphi(n)); \\ Michel Marcus, Oct 02 2017

Extensions

Offset corrected by Donovan Johnson, Jan 18 2012

A065148 Nonprimes m such that phi(m)*sigma(m) is divisible by m+1.

Original entry on oeis.org

15, 20, 35, 95, 104, 143, 207, 255, 287, 319, 323, 464, 539, 650, 890, 899, 1023, 1034, 1199, 1295, 1349, 1407, 1519, 1763, 1952, 2015, 2204, 2834, 2975, 3599, 4031, 4454, 4607, 5183, 6479, 9215, 9503, 9799, 10403, 11339, 11663, 12095, 12824, 13055
Offset: 1

Views

Author

Labos Elemer, Oct 18 2001

Keywords

Comments

Every prime p satisfies A000010(p)*A000203(p) == 0 (mod p+1).

Examples

			m = 95 is a term since phi(95) = 72, sigma(95) = 120, product = 8640, product/(m+1) = 90.
		

Crossrefs

Programs

  • Mathematica
    Do[s=EulerPhi[n]*DivisorSigma[1, n]; If[IntegerQ[s/(n+1)]&&!PrimeQ[n], Print[n]], {n, 1, 100000}]
    Select[Range[14000],!PrimeQ[#]&&Divisible[EulerPhi[#]DivisorSigma[1,#],#+1]&] (* Harvey P. Dale, Jul 08 2017 *)
  • PARI
    { n=0; for (m=1, 10^9, s=eulerphi(m)*sigma(m); if (s%(m+1) == 0 && !isprime(m), write("b065148.txt", n++, " ", m); if (n==500, return)) ) } \\ Harry J. Smith, Oct 12 2009

Formula

A000010(m)*A000203(m) == 0 (mod m+1), m is composite.

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Oct 12 2009
Definition clarified by Harvey P. Dale, Jul 08 2017

A065149 Composite numbers m such that phi(m)*sigma(m) is divisible by m-1.

Original entry on oeis.org

10, 33, 65, 136, 145, 261, 385, 451, 897, 946, 1281, 1441, 1665, 1729, 2241, 2353, 3585, 5185, 6721, 7201, 8380, 8911, 8961, 11521, 11782, 12673, 12801, 17101, 18241, 20737, 25201, 26625, 26677, 26937, 29697, 29953, 30721, 30889, 32896
Offset: 1

Views

Author

Labos Elemer, Oct 18 2001

Keywords

Examples

			m=136, phi(136)=64, sigma(136)=270, product=17280, quotient=128; for primes the formula holds.
		

Crossrefs

Programs

  • GAP
    Filtered([2..40000],m->Phi(m)*Sigma(m) mod (m-1)=0 and not IsPrime(m)); # Muniru A Asiru, Jun 18 2018
  • Maple
    with(numtheory): select(m->modp(phi(m)*sigma(m),m-1)=0 and not isprime(m),[$2..40000]); # Muniru A Asiru, Jun 18 2018
  • Mathematica
    Do[s=EulerPhi[n]*DivisorSigma[1, n]; If[IntegerQ[s/(n-1)]&&!PrimeQ[n], Print[n]], {n, 1, 100000}]
  • PARI
    { n=0; for (m=2, 10^9, s=eulerphi(m)*sigma(m); if (s%(m-1) == 0 && !isprime(m), write("b065149.txt", n++, " ", m); if (n==500, return)) ) } \\ Harry J. Smith, Oct 12 2009
    

Formula

(A000010(m)*A000203(m)) mod (m-1) = 0, m is composite.

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Oct 12 2009

A065150 Numbers k such that the harmonic mean of phi(k) and sigma(k) is an integer.

Original entry on oeis.org

1, 12, 15, 35, 56, 78, 95, 140, 143, 172, 190, 248, 264, 287, 315, 319, 323, 357, 418, 477, 588, 594, 675, 812, 814, 840, 899, 910, 1045, 1107, 1118, 1131, 1199, 1208, 1254, 1349, 1420, 1425, 1485, 1495, 1558, 1608, 1672, 1763, 2214, 2261, 2318, 2337
Offset: 1

Views

Author

Labos Elemer, Oct 18 2001

Keywords

Examples

			m = 319, phi(319) = 280, sigma(319) = 360; phi(319)*sigma(319) = 100800, phi(319) + sigma(319) = 640; 1/(harmonic mean) = (640/100800)/2, harmonic mean = 315, arithmetic mean = 320, geometric mean is not an integer.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2400], IntegerQ[HarmonicMean @ {EulerPhi[#], DivisorSigma[1, #]}] &] (* Amiram Eldar, Mar 20 2025 *)
  • PARI
    { n=0; for (m=1, 10^9, e=eulerphi(m); s=sigma(m); h=(2*e*s)/(e + s); if (frac(h) == 0, write("b065150.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 13 2009

Formula

G^2 mod A = 0, where G^2 = A000010(m)*A000203(m), A = (A000010(m) + A000203(m))/2; harmonic mean = (G^2)/A is an integer.

A165629 Numbers n such that sigma(n)/phi(n) = 25/4, where sigma = A000203, phi = A000010.

Original entry on oeis.org

760, 11020, 18088, 21112, 58206, 65262, 71630, 100280, 123424, 142688, 262276, 303212, 332710, 630344, 679070, 761390, 1265096, 1369120, 1454060, 1454260, 1462552, 1704794, 2185750, 2386664, 2627548, 2783872, 2786056, 2909380, 2927848, 5207680, 5289220
Offset: 1

Views

Author

Keywords

Comments

A subsequence of A011257. Contains the product m*n of relatively prime (gcd(m,n)=1) terms (m,n) in A068390 x A164648 and in A164646 x A165630.

Programs

  • Mathematica
    Select[Range[5300000],4*DivisorSigma[1,#]==25*EulerPhi[#]&] (* Harvey P. Dale, May 09 2012 *)
  • PARI
    for( i=1,1e9, sigma(i)*4-25*eulerphi(i) || print1(i", "))
Previous Showing 11-20 of 22 results. Next