cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 56 results. Next

A123075 Smallest number expressible as the sum of three 4th powers in exactly n ways.

Original entry on oeis.org

1, 2673, 811538, 5978882, 137149922, 292965218, 779888018, 5745705602, 105760443698, 49511121842, 1872511131218, 281539574498, 17673688436978, 17873514984962, 253930825318898, 7865870969138, 768054952462322
Offset: 1

Views

Author

Tom Womack (tom(AT)womack.net), Sep 19 2006

Keywords

Crossrefs

A133029 Divisors of 1729, the 2nd taxicab number (also called the Hardy-Ramanujan number).

Original entry on oeis.org

1, 7, 13, 19, 91, 133, 247, 1729
Offset: 1

Views

Author

Omar E. Pol, Oct 23 2007, Nov 07 2007

Keywords

Comments

Note that 19 * 91 = 1729. For products of n-th prime and n-th prime written backwards, see A133019.

Examples

			7 * 247 = 1729 and 13 * 133 = 1729.
		

Crossrefs

Cf. A000005, A018487. Taxicab numbers: A011541.

Programs

A230561 Smallest number that is the sum of two positive n-th powers in >= n ways.

Original entry on oeis.org

2, 50, 87539319
Offset: 1

Views

Author

Jonathan Sondow, Oct 23 2013

Keywords

Comments

Guy, 2004: "Euler knew that 635318657 = 133^4 + 134^4 = 59^4 + 158^4, and Leech showed this to be the smallest example. No one knows of three such equal sums." Thus no one knows whether a(4) exists, which requires four such equal sums.
a(4) > 10^21 (if it exists). There is no number <= 10^21 that is the sum of two positive 4th powers in >= three ways. - Donovan Johnson, Jan 07 2014

Examples

			2 = 1^1 + 1^1.
50 = 1^2 + 7^2 = 5^2 + 5^2.
87539319 = 167^3 + 436^3 = 228^3 + 423^3 = 255^3 + 414^3.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, D1.

Crossrefs

Cf. A048610, A011541 for a(2), a(3).
Cf. also A016078, A230477.

Formula

a(n) >= A016078(n) for n > 1, with equality at least for n = 2, and inequality at least for n = 3.

A343708 Numbers that are the sum of two positive cubes in exactly two ways.

Original entry on oeis.org

1729, 4104, 13832, 20683, 32832, 39312, 40033, 46683, 64232, 65728, 110656, 110808, 134379, 149389, 165464, 171288, 195841, 216027, 216125, 262656, 314496, 320264, 327763, 373464, 402597, 439101, 443889, 513000, 513856, 515375, 525824, 558441, 593047, 684019, 704977, 805688, 842751, 885248, 886464
Offset: 1

Views

Author

David Consiglio, Jr., Apr 26 2021

Keywords

Comments

This sequence differs from A001235 at term 455 because 87539319 = 167^3 + 436^3 = 228^3 + 423^3 = 255^3 + 414^3 = A011541(3). Thus, this term is not in this sequence but is in A001235.

Examples

			13832 is in this sequence because 13832 = 2^3 + 24^3 = 18^3 + 20^3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@70000,Length@Select[PowersRepresentations[#,2,3],FreeQ[#,0]&]==2&] (* Giorgos Kalogeropoulos, Apr 26 2021 *)
  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,1000)]#n
    for pos in cwr(power_terms,2):#m
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 2])#s
    for x in range(len(rets)):
        print(rets[x])

A154728 Products of three consecutive primes of the form 6n+1 (see A002476).

Original entry on oeis.org

1729, 7657, 21793, 49321, 97051, 175741, 298351, 386389, 559399, 789289, 1089019, 1425829, 1924177, 2665603, 3295273, 3864241, 4631971, 5694079, 6951667, 8103877, 9363547, 10775137, 12307147, 14956219, 18091147, 21243961, 24066037
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2009, Jan 21 2009

Keywords

Comments

Note that a(1)=1729 is the Hardy-Ramanujan number (see taxicab numbers in A001235, A011541).

Examples

			13, 19, 31 are three consecutive primes of the form 6n+1 and 13*19*31 = 7657. - _Emeric Deutsch_, Jan 21 2009
		

Crossrefs

Programs

  • Maple
    a := proc (n) if `mod`(ithprime(n), 6) = 1 then ithprime(n) else end if end proc: A := [seq(a(n), n = 1 .. 100)]: seq(A[j]*A[j+1]*A[j+2], j = 1 .. 30); # Emeric Deutsch, Jan 21 2009
  • Mathematica
    Times@@@Partition[Select[Prime[Range[100]],IntegerQ[(#-1)/6]&],3,1] (* Harvey P. Dale, Jan 13 2019 *)

Extensions

Extended by Emeric Deutsch, Jan 21 2009

A180088 Primes which are the sum of three distinct positive cubes in two or more distinct ways.

Original entry on oeis.org

1009, 4229, 4447, 4733, 6301, 7561, 10657, 12377, 12979, 13103, 13859, 14561, 15569, 15667, 17207, 20663, 20747, 20899, 21673, 22511, 24137, 24499, 25999, 27793, 27917, 28001, 28493, 28729, 29917, 31123, 32579, 32833, 32957, 33119
Offset: 1

Views

Author

Keywords

Comments

1^3+2^3+10^3=1009=4^3+6^3+9^3

Crossrefs

Programs

  • Mathematica
    lst1=Sort@Select[Flatten[Table[a^3+b^3+c^3,{a,1,66},{b,a-1,1,-1},{c,b-1,1,-1}]],PrimeQ[ # ]&]; lst={};Do[If[lst1[[n]]==lst1[[n+1]],AppendTo[lst,lst1[[n]]]],{n,Length[lst1]-1}];lst

A080642 Cubefree taxicab numbers: the smallest cubefree number that is the sum of 2 positive cubes in n ways.

Original entry on oeis.org

2, 1729, 15170835645, 1801049058342701083
Offset: 1

Views

Author

Stuart Gascoigne (Stuart.G(AT)scoigne.com), Feb 28 2003

Keywords

Comments

A necessary condition for the sum to be cubefree is that each pair of cubes be relatively prime.
If the sequence is infinite, then the Mordell-Weil rank of the elliptic curve of rational solutions to x^3 + y^3 = a(n) tends to infinity with n. In fact, the rank exceeds C*log(n) for some constant C>0 (see Silverman p. 339). - Jonathan Sondow, Oct 22 2013

Examples

			2 = 1^3 + 1^3,
1729 = 12^3 + 1^3 = 10^3 + 9^3,
15170835645 = 2468^3 + 517^3 = 2456^3 + 709^3 = 2152^3 + 1733^3,
1801049058342701083 = 1216500^3 + 92227^3 = 1216102^3 + 136635^3 = 1207602^3 + 341995^3 = 1165884^3 + 600259^3.
		

Crossrefs

Cf. A011541.

Formula

a(n) >= A011541(n) for n > 0, with equality for n = 1, 2 (only?). - Jonathan Sondow, Oct 25 2013

Extensions

Name clarified by Jeppe Stig Nielsen, Aug 21 2020

A154716 Products of three consecutive happy primes A035497.

Original entry on oeis.org

1729, 5681, 13547, 56327, 237553, 789289, 1089019, 1560553, 2530217, 4480109, 7703209, 12131401, 18417101, 24119467, 30355679, 38022301, 46039783, 53272619, 57627329, 62188859, 79075651, 112140029, 169169677, 226833263, 271152373, 300157327, 325898231
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2009

Keywords

Comments

Note that a(1) = 1729 is the Hardy-Ramanujan number (see taxicab numbers in A001235, A011541).

Crossrefs

Programs

  • Mathematica
    happyQ[n_, b_] := NestWhile[Total[IntegerDigits[#, b]^2] &, n, UnsameQ, All] == 1; Times @@@ Partition[Select[Prime[Range[150]], happyQ[#, 10] &], 3, 1] (* Amiram Eldar, Jan 17 2025 *)

Extensions

a(5)-a(27) from Nathaniel Johnston, Apr 30 2011

A154717 Products of three distinct happy primes A035497.

Original entry on oeis.org

1729, 2093, 2821, 3059, 4123, 4991, 5681, 7189, 7657, 8827, 9269, 9373, 9919, 10507, 12649, 12719, 12901, 13547, 13699, 14497, 15197, 15617, 16583, 17143, 17549, 17563, 18487, 19513, 21049, 21749, 22211, 22351, 22379, 23621, 23653, 23933, 23959, 25441
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2009

Keywords

Comments

Note that a(1)=1729 is the Hardy-Ramanujan number (see taxicab numbers in A001235, A011541).

Crossrefs

Extensions

a(5) - a(38) from Nathaniel Johnston, Apr 30 2011

A180089 Semiprimes which are the sum of three distinct positive cubes in two or more distinct ways.

Original entry on oeis.org

1366, 1457, 1793, 1945, 3599, 4105, 5435, 7379, 8315, 9017, 10261, 10963, 11773, 12706, 13957, 15163, 15371, 15553, 15751, 15758, 16271, 17263, 17354, 17947, 18649, 19027, 19369, 19657, 19729, 19774, 19781, 19907, 21026, 21167, 22411
Offset: 1

Views

Author

Keywords

Comments

2^3+3^3+11^3=5^3+8^3+9^3=1366=2*683, 1^3+5^3+11^3=6^3+8^3+9^3=1457=31*47,..

Crossrefs

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}; lst={};Do[Do[Do[If[f[p=a^3+b^3+c^3],AppendTo[lst,p]],{c,b-1,1,-1}],{b,a-1,1,-1}],{a,55}];lst1=Sort@lst; lst={};Do[If[lst1[[n]]==lst1[[n+1]],AppendTo[lst,lst1[[n]]]],{n,Length[lst1]-1}];lst
Previous Showing 21-30 of 56 results. Next