A102344
Numbers n such that the Diophantine equation (x+2)^3-x^3=2*n^2 has solutions.
Original entry on oeis.org
2, 7, 97, 1351, 18817, 262087, 3650401, 50843527, 708158977, 9863382151, 137379191137, 1913445293767, 26650854921601, 371198523608647, 5170128475599457, 72010600134783751, 1002978273411373057, 13969685227624439047, 194572614913330773601, 2710046923559006391367
Offset: 1
The first examples are 2^3-0^3=2*2^2 ; 5^3-3^3=2*7^2 ; 57^3-55^3=2*97^2 ; 781^3-779^3=2*1351^2 ; 10865^3-10863^3=2*18817^2
-
I:=[2,7,97]; [n le 3 select I[n] else 14*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 19 2015
-
2, seq(othopoly[T](n,7),n=1..50); # Robert Israel, Apr 19 2015
-
a[1]=2; a[2]=7; a[3]=97; a[n_] := a[n] = 14*a[n-1]-a[n-2]; Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Dec 17 2013 *)
LinearRecurrence[{14,-1},{2,7,97},20] (* Harvey P. Dale, Sep 26 2016 *)
-
Vec(x*(2-21*x+x^2)/(1-14*x+x^2) + O(x^30)) \\ Michel Marcus, Apr 19 2015
Original entry on oeis.org
1, -8, 15, -112, 209, -1560, 2911, -21728, 40545, -302632, 564719, -4215120, 7865521, -58709048, 109552575, -817711552, 1525870529, -11389252680, 21252634831, -158631825968, 296011017105, -2209456310872, 4122901604639, -30773756526240, 57424611447841
Offset: 0
-
[(3*(-1)^n-1)*Evaluate(ChebyshevSecond(n+1), 2)/2: n in [0..40]]; // G. C. Greubel, Jan 04 2023
-
seriestolist(series((1-8*x+x^2)/((x^2-4*x+1)*(x^2+4*x+1)), x=0,25));
-
CoefficientList[Series[(1-8x+x^2)/((1-4x+x^2)(1+4x+x^2)), {x, 0, 24}], x] (* Michael De Vlieger, Nov 01 2016 *)
LinearRecurrence[{0,14,0,-1},{1,-8,15,-112},30] (* Harvey P. Dale, Dec 16 2024 *)
-
Vec((1-8*x+x^2)/((1-4*x+x^2)*(1+4*x+x^2)) + O(x^30)) \\ Colin Barker, Nov 01 2016
-
[(3*(-1)^n-1)*chebyshev_U(n,2)/2 for n in range(41)] # G. C. Greubel, Jan 04 2023
A232765
Values of y solving x^2 = floor(y^2/3 + y).
Original entry on oeis.org
0, 1, 4, 9, 28, 73, 144, 409, 1036, 2025, 5716, 14449, 28224, 79633, 201268, 393129, 1109164, 2803321, 5475600, 15448681, 39045244, 76265289, 215172388, 543830113, 1062238464, 2996964769, 7574576356, 14795073225, 41742334396, 105500238889, 206068786704, 581395716793, 1469428768108
Offset: 1
-
is(n)=issquare(n^2\3+n)
print1("0, 1");for(x=3,99,y=round(sqrt(3)*x-3/2);if(is(y),print1(", "y))) \\ Charles R Greathouse IV, Dec 09 2013
A099270
Unsigned member r=-12 of the family of Chebyshev sequences S_r(n) defined in A092184.
Original entry on oeis.org
0, 1, 12, 169, 2352, 32761, 456300, 6355441, 88519872, 1232922769, 17172398892, 239180661721, 3331356865200, 46399815451081, 646266059449932, 9001325016847969, 125372284176421632, 1746210653453054881
Offset: 0
-
a[n_] := (ChebyshevT[n, 7] - (-1)^n)/8; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jun 21 2013, from 1st formula *)
CoefficientList[Series[x (1 - x) / ((1 + x) (1 - 14 x + x^2)), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 21 2013 *)
-
a(n)=real(((7+4*quadgen(12))^n-(-1)^n)/8) /* Michael Somos, Apr 30 2005 */
-
a(n)=n=abs(2*n); round(2^(n-4)*prod(k=1,n,2-sin(2*Pi*k/n)))
A141575
A gap prime-type triangular sequence of coefficients: gap(n)=Prime[n+1]-Prime[n]; t(n,m)=If[n == m == 0, 1, If[m == 0, ((Prime[n] + gap[n])^ n + (Prime[n] - gap[n])^n)/2, ((Prime[n] + gap[n]*Sqrt[Prime[m]])^n + (Prime[n] - gap[n]*Sqrt[Prime[m]])^n)/2]].
Original entry on oeis.org
1, 2, 2, 13, 17, 21, 185, 245, 305, 425, 7361, 12833, 18817, 32321, 47873, 215171, 271051, 328691, 449251, 576851, 853171, 12334505, 21164697, 31341961, 55836009, 86013257, 164203785, 212610281, 532365557, 659940697, 793109789, 1076412613
Offset: 1
{1},
{2, 2},
{13, 17, 21},
{185, 245, 305, 425},
{7361, 12833, 18817, 32321, 47873},
{215171, 271051, 328691, 449251, 576851, 853171},
{12334505, 21164697, 31341961, 55836009, 86013257, 164203785, 212610281},
{532365557, 659940697, 793109789, 1076412613, 1382639597, 2065328317, 2442521189, 3270431797},
{40436937953, 68810349217, 102354570337, 185966400481, 293310073697, 587469359713, 778486092257, 1259085279457, 1553019848801},
{7312866926183, 15217609281335, 25813998655559, 56317915837223,
101380456546055, 246072307427783, 351480840333479, 643872497781095,
837435900955463, 1336749872660999}, {512759709537725, 608866569299409,
709085196658213, 922088454409101, 1152233212894709, 1665820807145925,
1950209769575213, 2576571400365309, 2919512658836837, 3667365684348213,
4951533162173037}
-
gap[n_] := Prime[n + 1] - Prime[n]; t[n_, m_] := If[n == m == 0, 1, If[m == 0, ((Prime[n] + gap[n])^n + (Prime[n] - gap[n])^n)/2, ((Prime[n] + gap[n]*Sqrt[Prime[m]])^n + (Prime[n] - gap[n]*Sqrt[Prime[m]])^n)/2]]; Table[Table[FullSimplify[t[n, m]], {m, 0, n}], {n, 0, 10}]; Flatten[%]
Comments