cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A102344 Numbers n such that the Diophantine equation (x+2)^3-x^3=2*n^2 has solutions.

Original entry on oeis.org

2, 7, 97, 1351, 18817, 262087, 3650401, 50843527, 708158977, 9863382151, 137379191137, 1913445293767, 26650854921601, 371198523608647, 5170128475599457, 72010600134783751, 1002978273411373057, 13969685227624439047, 194572614913330773601, 2710046923559006391367
Offset: 1

Views

Author

Richard Choulet, Sep 08 2008

Keywords

Comments

n^2 = 3*(2*x+4)^2+16.
Essentially the same as A011943. - Chris Boyd, Apr 18 2015

Examples

			The first examples are 2^3-0^3=2*2^2 ; 5^3-3^3=2*7^2 ; 57^3-55^3=2*97^2 ; 781^3-779^3=2*1351^2 ; 10865^3-10863^3=2*18817^2
		

Crossrefs

Cf. A011943.

Programs

  • Magma
    I:=[2,7,97]; [n le 3 select I[n] else 14*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 19 2015
    
  • Maple
    2, seq(othopoly[T](n,7),n=1..50); # Robert Israel, Apr 19 2015
  • Mathematica
    a[1]=2; a[2]=7; a[3]=97; a[n_] := a[n] = 14*a[n-1]-a[n-2]; Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Dec 17 2013 *)
    LinearRecurrence[{14,-1},{2,7,97},20] (* Harvey P. Dale, Sep 26 2016 *)
  • PARI
    Vec(x*(2-21*x+x^2)/(1-14*x+x^2) + O(x^30)) \\ Michel Marcus, Apr 19 2015

Formula

a(n+2) = 14*a(n+1)-a(n) for n>=2.
G.f.: x*(2-21*x+x^2)/(1-14*x+x^2). a(n)=7*A007655(n+2)-97*A007655(n+1), n>1. - R. J. Mathar, Sep 11 2008

Extensions

More terms from Vincenzo Librandi, Apr 19 2015

A110294 a(2*n) = A028230(n), a(2*n+1) = -A067900(n+1).

Original entry on oeis.org

1, -8, 15, -112, 209, -1560, 2911, -21728, 40545, -302632, 564719, -4215120, 7865521, -58709048, 109552575, -817711552, 1525870529, -11389252680, 21252634831, -158631825968, 296011017105, -2209456310872, 4122901604639, -30773756526240, 57424611447841
Offset: 0

Views

Author

Creighton Dement, Jul 18 2005

Keywords

Comments

See A110293.

Crossrefs

Programs

  • Magma
    [(3*(-1)^n-1)*Evaluate(ChebyshevSecond(n+1), 2)/2: n in [0..40]]; // G. C. Greubel, Jan 04 2023
    
  • Maple
    seriestolist(series((1-8*x+x^2)/((x^2-4*x+1)*(x^2+4*x+1)), x=0,25));
  • Mathematica
    CoefficientList[Series[(1-8x+x^2)/((1-4x+x^2)(1+4x+x^2)), {x, 0, 24}], x] (* Michael De Vlieger, Nov 01 2016 *)
    LinearRecurrence[{0,14,0,-1},{1,-8,15,-112},30] (* Harvey P. Dale, Dec 16 2024 *)
  • PARI
    Vec((1-8*x+x^2)/((1-4*x+x^2)*(1+4*x+x^2)) + O(x^30)) \\ Colin Barker, Nov 01 2016
    
  • SageMath
    [(3*(-1)^n-1)*chebyshev_U(n,2)/2 for n in range(41)] # G. C. Greubel, Jan 04 2023

Formula

G.f.: (1-8*x+x^2) / ((1-4*x+x^2)*(1+4*x+x^2)).
a(n) = 14*a(n-2) - a(n-4) for n>3. - Colin Barker, Nov 01 2016
a(n) = (3*(-1)^n - 1)*A001353(n+1)/2. - R. J. Mathar, Sep 11 2019

A232765 Values of y solving x^2 = floor(y^2/3 + y).

Original entry on oeis.org

0, 1, 4, 9, 28, 73, 144, 409, 1036, 2025, 5716, 14449, 28224, 79633, 201268, 393129, 1109164, 2803321, 5475600, 15448681, 39045244, 76265289, 215172388, 543830113, 1062238464, 2996964769, 7574576356, 14795073225, 41742334396, 105500238889, 206068786704, 581395716793, 1469428768108
Offset: 1

Views

Author

Richard R. Forberg, Nov 29 2013

Keywords

Comments

The corresponding values of x are given by A232771.
a(n) + 3 gives the values of y solving x^2 = floor(y^2/3 - y), and yields the same values for x.
a(3n+1) are squares whose square roots are given by A005320.
Let b(n) equal the second differences of a(n) where b(1) = 2. Then, for n>0, b(3n-1) = b(3n-2) = 2* A001570(n+1); b(3n)= 2*A011943(n); and b(3n) = (b(3n+1) + b(3n-1))/2.

Crossrefs

Programs

  • PARI
    is(n)=issquare(n^2\3+n)
    print1("0, 1");for(x=3,99,y=round(sqrt(3)*x-3/2);if(is(y),print1(", "y))) \\ Charles R Greathouse IV, Dec 09 2013

Formula

Empirical g.f.: -x^2*(x+1)*(x^2+x+1)^2 / ((x-1)*(x^6-14*x^3+1)). - Colin Barker, Dec 30 2014

Extensions

a(23) corrected by Colin Barker, Dec 30 2014

A099270 Unsigned member r=-12 of the family of Chebyshev sequences S_r(n) defined in A092184.

Original entry on oeis.org

0, 1, 12, 169, 2352, 32761, 456300, 6355441, 88519872, 1232922769, 17172398892, 239180661721, 3331356865200, 46399815451081, 646266059449932, 9001325016847969, 125372284176421632, 1746210653453054881
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Comments

((-1)^(n+1))*a(n) = S_{-12}(n), n>=0, defined in A092184.

Programs

  • Mathematica
    a[n_] := (ChebyshevT[n, 7] - (-1)^n)/8; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jun 21 2013, from 1st formula *)
    CoefficientList[Series[x (1 - x) / ((1 + x) (1 - 14 x + x^2)), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 21 2013 *)
  • PARI
    a(n)=real(((7+4*quadgen(12))^n-(-1)^n)/8) /* Michael Somos, Apr 30 2005 */
    
  • PARI
    a(n)=n=abs(2*n); round(2^(n-4)*prod(k=1,n,2-sin(2*Pi*k/n)))

Formula

a(n) = (T(n, 7)-(-1)^n)/8, with Chebyshev's polynomials of the first kind evaluated at x=7: T(n, 7)=A011943(n)=((7+4*sqrt(3))^n + (7-4*sqrt(3))^n)/2.
a(n) = 13*a(n-1) + 13*a(n-2) - a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=12.
G.f.: x*(1-x)/((1+x)*(1-14*x+x^2)) = x*(1-x)/(1-13*x-13*x^2+x^3) (from the Stephan link, see A092184).
a(n) = 14*a(n-1)-a(n-2)-2*(-1)^n, a(0)=0, a(1)=1. a(-n)=a(n).

A141575 A gap prime-type triangular sequence of coefficients: gap(n)=Prime[n+1]-Prime[n]; t(n,m)=If[n == m == 0, 1, If[m == 0, ((Prime[n] + gap[n])^ n + (Prime[n] - gap[n])^n)/2, ((Prime[n] + gap[n]*Sqrt[Prime[m]])^n + (Prime[n] - gap[n]*Sqrt[Prime[m]])^n)/2]].

Original entry on oeis.org

1, 2, 2, 13, 17, 21, 185, 245, 305, 425, 7361, 12833, 18817, 32321, 47873, 215171, 271051, 328691, 449251, 576851, 853171, 12334505, 21164697, 31341961, 55836009, 86013257, 164203785, 212610281, 532365557, 659940697, 793109789, 1076412613
Offset: 1

Views

Author

Roger L. Bagula, Aug 18 2008

Keywords

Comments

General Lucas-like Binet sequences
where Prime[m]starts at 1:
a(n)=((Prime[n]+gap[n]*Sqrt[Prime[m])^n+(Prime[n]-gap[n]*Sqrt[Prime[m])^n)/2.
Row sums are:
{1, 4, 51, 1160, 119205, 2694186, 583504495, 12222749556, 4868938911913,
3621654266405174, 21636046625243691}

Examples

			{1},
{2, 2},
{13, 17, 21},
{185, 245, 305, 425},
{7361, 12833, 18817, 32321, 47873},
{215171, 271051, 328691, 449251, 576851, 853171},
{12334505, 21164697, 31341961, 55836009, 86013257, 164203785, 212610281},
{532365557, 659940697, 793109789, 1076412613, 1382639597, 2065328317, 2442521189, 3270431797},
{40436937953, 68810349217, 102354570337, 185966400481, 293310073697, 587469359713, 778486092257, 1259085279457, 1553019848801},
{7312866926183, 15217609281335, 25813998655559, 56317915837223,
101380456546055, 246072307427783, 351480840333479, 643872497781095,
837435900955463, 1336749872660999}, {512759709537725, 608866569299409,
709085196658213, 922088454409101, 1152233212894709, 1665820807145925,
1950209769575213, 2576571400365309, 2919512658836837, 3667365684348213,
4951533162173037}
		

Crossrefs

Programs

  • Mathematica
    gap[n_] := Prime[n + 1] - Prime[n]; t[n_, m_] := If[n == m == 0, 1, If[m == 0, ((Prime[n] + gap[n])^n + (Prime[n] - gap[n])^n)/2, ((Prime[n] + gap[n]*Sqrt[Prime[m]])^n + (Prime[n] - gap[n]*Sqrt[Prime[m]])^n)/2]]; Table[Table[FullSimplify[t[n, m]], {m, 0, n}], {n, 0, 10}]; Flatten[%]

Formula

gap(n)=Prime[n+1]-Prime[n]; t(n,m)=If[n == m == 0, 1, If[m == 0, ((Prime[n] + gap[n])^ n + (Prime[n] - gap[n])^n)/2, ((Prime[n] + gap[n]*Sqrt[Prime[m]])^n + (Prime[n] - gap[n]*Sqrt[Prime[m]])^n)/2]].
Previous Showing 21-25 of 25 results.