cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 61 results. Next

A259697 Triangle read by rows: T(n,k) = number of rook patterns on n X n board where bottom rook is in column k.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 4, 5, 5, 1, 9, 12, 15, 15, 1, 24, 32, 42, 52, 52, 1, 76, 99, 129, 166, 203, 203, 1, 279, 354, 451, 575, 726, 877, 877, 1, 1156, 1434, 1786, 2232, 2792, 3466, 4140, 4140, 1, 5296, 6451, 7883, 9664, 11881, 14621, 17884, 21147, 21147
Offset: 0

Views

Author

N. J. A. Sloane, Jul 05 2015

Keywords

Comments

See Becker (1948/49) for precise definition.
This is the number of arrangements of non-attacking rooks on an n X n right triangular board where the bottom rook is in column k. The case of k=0 corresponds to the empty board where there is no bottom rook. - Andrew Howroyd, Jun 13 2017

Examples

			Triangle begins:
  1,
  1,  1,
  1,  2,  2,
  1,  4,  5,   5,
  1,  9, 12,  15,  15,
  1, 24, 32,  42,  52,  52,
  1, 76, 99, 129, 166, 203, 203,
  ...
From _Andrew Howroyd_, Jun 13 2017: (Start)
For n=3, the four solutions with the bottom rook in column 1 are:
  .      .      .      x
  . .    . x    x .    . .
  x . .  x . .  . . .  . . .
For n=3, the five solutions with the bottom rook in column 2 are:
  .      .      x      .       x
  . .    x .    . .    . x     . x
  . x .  . x .  . x .  . . .   . . .
(End)
		

Crossrefs

Right edge is A000110.
Column k=1 is A005001.
Row sums are A000110(n+1).

Programs

  • Mathematica
    a11971[n_, k_] := Sum[Binomial[k, i]*BellB[n - k + i], {i, 0, k}];
    T[, 0] = 1; T[n, k_] := Sum[a11971[i - 1, k - 1], {i, k, n}];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 07 2018, after Andrew Howroyd *)
  • PARI
    A(N)={my(T=matrix(N,N),U=matrix(N,N));T[1,1]=1;U[1,1]=1;
    for(n=2,N,for(k=1,n, T[n,k]=if(k==1,T[n-1,n-1],T[n-1,k-1]+T[n,k-1]); U[n,k]=T[n,k]+U[n-1,k]));U}
    {my(T=A(10));for(n=0,length(T),for(k=0,n,print1(if(k==0,1,T[n,k]),", "));print)} \\ Andrew Howroyd, Jun 13 2017
    
  • Python
    from sympy import bell, binomial
    def a011971(n, k): return sum([binomial(k, i)*bell(n - k + i) for i in range(k + 1)])
    def T(n, k): return 1 if k==0 else sum([a011971(i - 1, k - 1) for i in range(k, n + 1)])
    for n in range(10): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Jun 17 2017

Formula

T(n,0) = 1, T(n,k) = Sum_{i=k..n} A011971(i-1,k-1) for k>0. - Andrew Howroyd, Jun 13 2017

Extensions

Terms a(28) and beyond from Andrew Howroyd, Jun 13 2017

A127741 a(n) = (n+1) * A005493(n).

Original entry on oeis.org

1, 6, 30, 148, 755, 4044, 22841, 136056, 853452, 5625950, 38885297, 281170080, 2122313505, 16688829122, 136457754030, 1158155642512, 10186602918035, 92711977180164, 871936904575985, 8462913158427580, 84668764368102012, 872196382566014506, 9241557859113581689
Offset: 0

Views

Author

Gary W. Adamson, Jan 27 2007

Keywords

Examples

			a(n) = sum of terms in n-th row of A127740. a(2) = 30 = (6 + 9 + 15).
		

Crossrefs

Cf. A005493, A052889, A011971, A127740 (row sums).

Programs

  • Mathematica
    lim=24;A005493=Differences[BellB[Range[lim]]];Array[(#+1)*A005493[[#+1]]&,lim-1,0] (* James C. McMahon, Jan 02 2025 *)
  • Python
    # requires Python 3.2 or higher. Otherwise use def'n of accumulate in Python docs.
    from itertools import accumulate
    A127741_list, blist, b = [], [1], 1
    for n in range(1,1001):
        blist = list(accumulate([b]+blist))
        b = blist[-1]
        A127741_list.append(blist[-2]*n) # Chai Wah Wu, Sep 20 2014

Formula

a(n) = (n+1) * A005493(n).

Extensions

Edited by Jon E. Schoenfield, May 27 2019

A159573 Triangle read by rows, A055248 * (A005493 * 0^(n-k)).

Original entry on oeis.org

1, 2, 1, 4, 3, 3, 8, 7, 12, 10, 16, 15, 33, 50, 37, 32, 31, 78, 160, 222, 151, 64, 63, 171, 420, 814, 1057, 674, 128, 127, 360, 990, 2368, 4379, 5392, 3263, 256, 255, 741, 2190, 6031, 14043, 24938, 29367, 17007, 512, 511, 1506, 4660, 14134, 38656, 87620
Offset: 0

Views

Author

Gary W. Adamson, Apr 16 2009

Keywords

Comments

Row sums = A005493: (1, 3, 10, 37, 151, 674, 3263,...); = row sums of Aitken's array. As a property of eigentriangles, sum of n-th row terms = rightmost term of next row.

Examples

			First few rows of the triangle =
1;
2, 1;
4, 3, 3;
8, 7, 12, 10;
16, 15, 33, 50, 37;
32, 31, 78, 160, 222, 151;
64, 63, 171, 420, 814, 1057, 674;
128, 127, 360, 990, 2368, 4379, 5392, 3263;
256, 255, 741, 2190, 6031, 14043, 24938, 29367, 17007;
512, 511, 1506, 4660, 14134, 38656, 87620, 150098, 170070, 94828;
1024, 1023, 3039, 9680, 31376, 96338, 260164, 574288, 952392, 1043108, 562595;
...
Example: row 3 = (8, 7, 12, 10) = termwise products of (8, 7, 4, 1) and
(1, 1, 3, 10), where (8, 7, 12, 10) = row 3 of triangle A055248.
		

Crossrefs

Formula

Triangle read by rows, A055248 * (A005493 * 0^(n-k)); equivalent to the product of triangle A055248 and its own eigensequence (diagonalized with the rest zeros, as an infinite lower triangular matrix).

A363732 Triangle read by rows. The triangle algorithm applied to (-1)^n/n!.

Original entry on oeis.org

1, -2, 1, 5, -4, 1, -15, 15, -6, 1, 52, -60, 30, -8, 1, -203, 260, -150, 50, -10, 1, 877, -1218, 780, -300, 75, -12, 1, -4140, 6139, -4263, 1820, -525, 105, -14, 1, 21147, -33120, 24556, -11368, 3640, -840, 140, -16, 1, -115975, 190323, -149040, 73668, -25578, 6552, -1260, 180, -18, 1
Offset: 0

Views

Author

Peter Luschny, Jun 18 2023

Keywords

Comments

The triangle algorithm, as understood here, is a transformation that maps a sequence of integers (a(n) : n >= 0) to a polynomial sequence. A polynomial sequence is a sequence of polynomials (P(n,x) : n >= 0) with degree(P(n, x)) = n for all n >= 0.
The polynomials P(n, x) are recursively defined by P(n, x) = p(n, 0, x), where the initial sequence is p(0, m, x) = a(m), and for n > 0 is given by
p(n, m, x) = (m + 1)*p(n - 1, m + 1, x) - (m + 1 - x)*p(n - 1, m, x).
Here we identify the polynomial sequence with the infinite lower triangular array of its coefficients, T(n, k) = [x^k] P(n, x). We call the mapping (a(n) : n >= 0) -> (T(n, k) : 0 <= k <= n) the 'triangle algorithm', following the lead of Kawasaki and Ohno.
Evaluating P(n, x) at different values of x gives rise to a multitude of other sequences; in particular, the transformation a(n) -> b(n) = P(n, 1) will be called the Akiyama-Tanigawa transform of a.
The triangle algorithm was studied by Akiyama and Tanigawa, Chen, Imatomi, Arakawa and Kaneko, Kawasaki and Ohno, and others, at first in connection with the Bernoulli and Poly-Bernoulli numbers.
.
The paradigmatic examples are:
a(n) = 1 -> x^n, the standard base of polynomials, A023531.
a(n) = n + 1 -> binomial(n, k), Pascal triangle, A007318.
a(n) = n + 1 -> P(n, 1) powers of 2, A000079.
a(n) = n + 1 -> P(n, 0) the all 1's sequence A000012.
a(n) = 2^n -> [x^k] P(n, x), A154921.
a(n) = 2^n -> P(n, 0) Fubini numbers, A000670.
a(n) = 2^n -> P(n, 1) ordered set partitions of subsets of [n], A000629.
a(n) = 2^n -> P(n,-1) osp. of [n] with even number of blocks, A052841.
a(n) = 1 / (n + 1) -> [x^k] B(n, x), Bernoulli polynomials, A196838/A196839.
a(n) = 1 / (n + 1) -> B(n, 1), the Bernoulli numbers, A164555/A027642.
a(n) = Chen(n) -> skp(n, x), Swiss-Knife polynomials, A153641.
a(n) = Chen(n) -> P(n, 0), 2^n*Euler(n, 1/2) = Euler(n), A122045.
a(n) = Chen(n) -> P(n, 1), 2^n*Euler(n, 1), A155585.
a(n) = (-1)^n/n! -> [x^k] P(n, x) this "Bell" triangle.
a(n) = (-1)^n/n! -> (-1)^n*P(n, 1) = Bell(n), A000110.
a(n) = (-1)^n/n! -> (-1)^n*P(n,-1) = 2-Bell(n), A005493.
a(n) = 1/n! -> (-1)^n*P(n, 1) = complementary Bell(n), A000587.
a(n) = 1/n! -> (-1)^n*P(n,-1) = complementary 2-Bell(n), A074051.
(For Chen's sequence see A363524.)
.
The present sequence deals with the case of the Bell numbers. In contrast to Aitken's array A011971 and its variants A123346 and A011972, the Bell numbers do not appear as a column of the triangle but as row sums (times (-1)^n), i.e., as values of the associated polynomials at x = 1. Comparing this with a similar situation with the Bernoulli numbers/polynomials, our triangle could be viewed as a more organic generalization of the Bell numbers. Indeed, the names 'Bell triangle' and 'Bell polynomials' would be justified here; but these are already assigned to other concepts.

Examples

			The triangle T(n, k) starts:
  [0]     1;
  [1]    -2,      1;
  [2]     5,     -4,     1;
  [3]   -15,     15,    -6,      1;
  [4]    52,    -60,    30,     -8,    1;
  [5]  -203,    260,  -150,     50,  -10,    1;
  [6]   877,  -1218,   780,   -300,   75,  -12,   1;
  [7] -4140,   6139, -4263,   1820, -525,  105, -14,   1;
  [8] 21147, -33120, 24556, -11368, 3640, -840, 140, -16, 1;
		

Crossrefs

Cf. A293037 (row sums), A000110 (row sums, unsigned), A005493 (alternating row sums, signed).

Programs

  • Maple
    TA := proc(a, n, m, x) option remember; if n = 0 then a(m) else
    normal((m + 1)*TA(a, n - 1, m + 1, x) - (m + 1 - x)*TA(a, n - 1, m, x)) fi end:
    seq(seq(coeff(TA(n -> (-1)^n/n!, n, 0, x), x, k), k = 0..n), n = 0..10);
  • Mathematica
    (* rows[0..n], n[0..oo] *)
    (* row[n]= *)
    n=9;r={};For[a=n+1,a>0,a--,AppendTo[r,(-1)^(a+1)*Sum[StirlingS2[a,k],{k,0,a}]*Product[(2*(a+j))/(2*j+2),{j,0,n-a}]]];r
    (* columns[1..n], n[0..oo] *)
    (* column[n]= *)
    n=0;c={};For[a=1,a<15,a++,AppendTo[c,(-1)^(a+1)*Sum[StirlingS2[a,k],{k,0,a}]*Product[(2*(a+j-1))/(2*j),{j,1,n}]]];c
    (* sequence *)
    s={};For[n=0,n<15,n++,For[a=n+1,a>0,a--,AppendTo[s,(-1)^(a+1)*Sum[StirlingS2[a,k],{k,0,a}]*Product[(2*(a+j))/(2*j+2),{j,0,n-a}]]]];s
    (* Detlef Meya, Jun 22 2023 *)
  • SageMath
    def a(n): return (-1)^n / factorial(n)
    @cached_function
    def p(n, m):
        R = PolynomialRing(QQ, "x")
        if n == 0: return R(a(m))
        return R((m + 1)*p(n - 1, m + 1) - (m + 1 - x)*p(n - 1, m))
    for n in range(10): print(p(n, 0).list())

A105605 An Aitken-like array: see Comments for definition.

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 5, 7, 1, 0, 6, 6, 1, 1, 8, 2, 8, 8, 8, 1, 4, 2, 5, 1, 0, 7, 9, 8, 8, 1, 6, 2, 1, 0, 4, 6, 1, 4, 1, 3, 1, 0, 1, 2, 2, 1, 0, 2, 6, 4, 7, 4, 1, 1, 1, 0, 2, 5, 2, 3, 3, 5, 3, 5, 5, 7, 8, 8, 1, 0, 7, 4, 1, 4, 8, 2, 5, 9, 2, 7, 1, 4, 4, 1, 0, 4, 9, 7, 6, 6, 1, 1, 8, 9, 1, 6, 1, 0, 1
Offset: 1

Views

Author

Eric Angelini, Sep 29 2009

Keywords

Comments

The entries are single digits.
- start the first row with 1
- a new row starts with the last digit of the previous one
- the successive digits on the same row are given by the 'vertical sum' operation applied to the current digit
- 'vertical sum': add to digit 'd' the digit exactly above 'd' and write the result at the right of 'd'
- if the vertical sum exceeds 9, separate the digits with a space
- proceed till the end of the row.

Examples

			We see here that the 4th row shows the 'vertical sum' 7+3 = 10 to the right of 7 like this: 7,1 0.
The array begins:
1.
1,2.
2,3,5.
5,7,1 0,6.
6,1 1,8,2,8,8.
8,1 4,2,5,1 0,7,9,8.
8,1 6,2,1 0,4,6,1,4,1 3,1 0,1 2.
2,1 0,2,6,4,7,4,1 1,1 0,2,5,2,3,3,5,3,5.
5,7,8,8,1 0,7,4,1 4,8,2,5,9,2,7,1 4,4,1 0,4,9,7,6.
6,1 1,8,9,1 6,1 0,1,1 3,5,1,5,9,5,1 0,1 0,7,1 6,6,5,4,2,0,1 1,1 0,1 3,1 2.
2,8,9,1 0,9,9,1 0,1 5,2,0,2,6,5,5,3,1 1,1 4,1 0,4,1,2,1,1 1,2,6,1 0,6,6,3,1,2,3,7,1,1,9,7,5.
5,7,1 5,1 0,6,1,9,1 5,2,9,2,1 0,4,9,4,7,5,9,1 2,5,8,6,1 3,2,2,9,9,8,2,4,3,4,1 5,1 0,8,8,1 0,6,5,3,8,8,1,9,1 7,8,5.
5,1 0,8,1,1 3,2,1,9,3,1 0,1 0,8,3,9,3,1,8,7,1 8,7,8,1 3,1 6,2,1 0,1 2,1 6,7,4,4,8,4,1 0,9,9,4,5,9,1 1,5,9,9,4,9,8,1 0,...
		

Crossrefs

A127740 Natural number transform of Aitken's triangle.

Original entry on oeis.org

1, 2, 4, 6, 9, 15, 20, 28, 40, 60, 75, 100, 135, 185, 260, 312, 402, 522, 684, 906, 1218, 1421, 1785, 2254, 2863, 3661, 4718, 6139, 7016, 8640, 10680, 13256, 16528, 20712, 26104, 33120, 37260, 45153, 54873, 66888, 81801, 100395, 123696, 153063, 190323
Offset: 0

Views

Author

Gary W. Adamson, Jan 27 2007

Keywords

Comments

Left column (1, 2, 6, 20, ...) = A052889.
Row sums give A127741.

Examples

			First few rows of the triangle:
   1;
   2,   4;
   6,   9,  15;
  20,  28,  40,  60;
  75, 100, 135, 185, 260;
  ...
		

Crossrefs

Formula

A127648 * A011971 as infinite lower triangular matrices.

A247108 Complementary Aitken's array: triangle of numbers {a(n,k), n >= 0, 0<=k<=n} read by rows, defined by a(0,0)=1, a(n,0)=-a(n-1,n-1), a(n,k)=a(n,k-1)+a(n-1,k-1).

Original entry on oeis.org

1, -1, 0, 0, -1, -1, 1, 1, 0, -1, 1, 2, 3, 3, 2, -2, -1, 1, 4, 7, 9, -9, -11, -12, -11, -7, 0, 9, -9, -18, -29, -41, -52, -59, -59, -50, 50, 41, 23, -6, -47, -99, -158, -217, -267, 267, 317, 358, 381, 375, 328, 229, 71, -146, -413, 413, 680, 997, 1355, 1736, 2111, 2439, 2668, 2739, 2593, 2180
Offset: 0

Views

Author

Chai Wah Wu, Nov 19 2014

Keywords

Comments

a(n,0) of the triangle is equal to A000587(n), the Rao Uppuluri-Carpenter numbers or complementary Bell numbers.

Examples

			Triangle begins:
00:      1
01:     -1      0
02:      0     -1     -1
03:      1      1      0     -1
04:      1      2      3      3      2
05:     -2     -1      1      4      7      9
06:     -9    -11    -12    -11     -7      0      9
07:     -9    -18    -29    -41    -52    -59    -59    -50
08:     50     41     23     -6    -47    -99   -158   -217   -267
09:    267    317    358    381    375    328    229     71   -146   -413
		

Crossrefs

Programs

  • Haskell
    a247108 n k = a247108_tabl !! n !! k
    a247108_row n = a247108_tabl !! n
    a247108_tabl = iterate (\row -> scanl (+) (- last row) row) [1]
    -- Reinhard Zumkeller, Nov 22 2014
  • Mathematica
    a[0, 0] = 1;
    a[n_, 0] := -a[n - 1, n - 1];
    a[n_, k_] /; 0 <= k <= n := a[n, k] = a[n, k - 1] + a[n - 1, k - 1];
    a[, ] = 0;
    Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 20 2019 *)
  • Python
    from itertools import accumulate
    A247108_list = blist = [1]
    for _ in range(10**2):
        b = -blist[-1]
        blist = list(accumulate([b]+blist))
        A247108_list += blist
    

A280470 Triangle A106534 with reversed rows.

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 5, 7, 10, 15, 14, 19, 26, 36, 51, 42, 56, 75, 101, 137, 188, 132, 174, 230, 305, 406, 543, 731, 429, 561, 735, 965, 1270, 1676, 2219, 2950, 1430, 1859, 2420, 3155, 4120, 5390, 7066, 9285, 12235, 4862, 6292, 8151, 10571, 13726, 17846, 23236, 30302, 39587, 51822, 16796, 21658, 27950, 36101, 46672
Offset: 0

Views

Author

Tony Foster III, Jan 03 2017

Keywords

Examples

			Fibonacci Determinant Triangle:
    1;
    1,    2;
    2,    3,    5;
    5,    7,   10,   15;
   14,   19,   26,   36,   51;
   42,   56,   75,  101,  137,  188;
  132,  174,  230,  305,  406,  543,  731;
  429,  561,  735,  965, 1270, 1676, 2219, 2950;
  ...
		

Crossrefs

Programs

  • Magma
    &cat [[&+[Binomial(k,j)*Catalan(n-j): j in [0..k]]: k in [0..n]]: n in [0..10]]; // Bruno Berselli, Mar 07 2017
  • Mathematica
    Table[Sum[Binomial[k, j] CatalanNumber[n - j], {j, 0, k}], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Mar 08 2017 *)
  • PARI
    C(n)=binomial(2*n,n)/(n+1);
    T(n,k)=sum(j=0,k,binomial(k,j)*C(n-j));
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()); \\ Joerg Arndt, Jan 15 2017
    

Formula

T(n,k) = Sum_{j=0..k} binomial(k,j) * A000108(n-j). - Joerg Arndt, Jan 15 2017

A376177 Triangle, read by rows, where T(n,k) = T(n-1,k-1) + 2*T(n,k-1) when k > 0, else T(n,0) = T(n-1,n-1) when n > 0, with T(0,0) = 1.

Original entry on oeis.org

1, 1, 3, 3, 7, 17, 17, 37, 81, 179, 179, 375, 787, 1655, 3489, 3489, 7157, 14689, 30165, 61985, 127459, 127459, 258407, 523971, 1062631, 2155427, 4372839, 8873137, 8873137, 17873733, 36005873, 72535717, 146134065, 294423557, 593219953, 1195313043, 1195313043, 2399499223, 4816872179, 9669750231, 19412036179, 38970206423, 78234836403, 157062892759, 315321098561, 315321098561
Offset: 0

Views

Author

George Plousos and Paul D. Hanna, Sep 22 2024

Keywords

Comments

This triangle was found by George Plousos while exploring a variation of Aitken's array (A011971).

Examples

			G.f.: A(x,y) = 1 + (3*y + 1)*x + (17*y^2 + 7*y + 3)*x^2 + (179*y^3 + 81*y^2 + 37*y + 17)*x^3 + (3489*y^4 + 1655*y^3 + 787*y^2 + 375*y + 179)*x^4 + (127459*y^5 + 61985*y^4 + 30165*y^3 + 14689*y^2 + 7157*y + 3489)*x^5 + (8873137*y^6 + 4372839*y^5 + 2155427*y^4 + 1062631*y^3 + 523971*y^2 + 258407*y + 127459)*x^6 + ...
which is defined by A(x,y) = (B(x) - 2*(B(x*y) - 1)/x) / (1 - (2+x)*y),
where B(x) = 1 + x*B( 2*x/(1-x) )/(1-x) is the g.f. B(x) for A126443,
B(x) = 1 + x + 3*x^2 + 17*x^3 + 179*x^4 + 3489*x^5 + 127459*x^6 + 8873137*x^7 + 1195313043*x^8 + 315321098561*x^9 + ... + A126443(n)*x^n + ...
This triangle begins
  1,
  1, 3,
  3, 7, 17,
  17, 37, 81, 179,
  179, 375, 787, 1655, 3489,
  3489, 7157, 14689, 30165, 61985, 127459,
  127459, 258407, 523971, 1062631, 2155427, 4372839, 8873137,
  8873137, 17873733, 36005873, 72535717, 146134065, 294423557, 593219953, 1195313043,
  ...
		

Crossrefs

Programs

  • PARI
    {A126443(n) = if(n==0, 1, sum(k=0, n-1, binomial(n-1, k) * 2^k * A126443(k)))}
    {T(n,k) = sum(j=0,k, binomial(k,j) * 2^j * A126443(n-k+j) )}
    for(n=0,10, for(k=0,n, print1(T(n,k),", ")); print(""))

Formula

If k > 0, T(n,k) = T(n-1,k-1) + 2*T(n,k-1), else if n > 0, T(n,0) = T(n-1,n-1), with T(0,0) = 1.
T(n,k) = Sum_{j=0..k} binomial(k,j) * 2^j * A126443(n-k+j), where A126443(m) = Sum_{k=0..m-1} binomial(m-1, k) * 2^k * A126443(k) for m > 0 with A126443(0) = 1.
G.f. A(x,y) = (B(x) - 2*(B(x*y) - 1)/x) / (1 - (2+x)*y), where B(x) = 1 + x*B( 2*x/(1-x) )/(1-x) is the g.f. B(x) for A126443 given therein by Ilya Gutkovskiy.

A275871 Row sums and second diagonal of A046934.

Original entry on oeis.org

1, 1, 4, 15, 61, 272, 1317, 6865, 38278, 227093, 1426921, 9457918, 65898275, 481177881, 3672102116, 29218285875, 241873478425, 2079079678176, 18524191138689, 170803860905237, 1627465240969382
Offset: 0

Views

Author

Olivier Gérard, Aug 11 2016

Keywords

Comments

The offset corresponds to the definition of A046934.
Differences of A032346 and of A032347.

Crossrefs

Cf. A005493 (first differences of Bell numbers, second diagonal and row sum of A011971).

Programs

  • Mathematica
    Clear[d]; d[0] = 1; d[1] = 0; d[n_] := d[n] =
      1 + Sum[Binomial[n - 1, j]*d[j], {j, 2, n - 1}]; Table[
    d[n + 2] - d[n + 1], {n, 0, 22}] (* From the code by  J.-F. Alcover and Jon Perry in A032347 *)
Previous Showing 51-60 of 61 results. Next