cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A192322 Negated discriminants of imaginary quadratic number fields whose class group is isomorphic to the Klein 4-group, C2 x C2.

Original entry on oeis.org

84, 120, 132, 168, 195, 228, 280, 312, 340, 372, 408, 435, 483, 520, 532, 555, 595, 627, 708, 715, 760, 795, 1012, 1435
Offset: 1

Views

Author

David Terr, Jun 28 2011

Keywords

Comments

Added keyword "full" - This sequence is a subsequence of A013658, whose last term is 1555. I have verified that the terms above are complete and correct. - Rick L. Shepherd, May 06 2013

Crossrefs

Subsequence of A013658.

Programs

  • PARI
    ok(n)={isfundamental(-n) && [2, 2] == quadclassunit(-n).cyc} \\ Andrew Howroyd, Jul 20 2018

A046003 Discriminants of imaginary quadratic fields with class number 6 (negated).

Original entry on oeis.org

87, 104, 116, 152, 212, 244, 247, 339, 411, 424, 436, 451, 472, 515, 628, 707, 771, 808, 835, 843, 856, 1048, 1059, 1099, 1108, 1147, 1192, 1203, 1219, 1267, 1315, 1347, 1363, 1432, 1563, 1588, 1603, 1843, 1915, 1963, 2227, 2283, 2443, 2515, 2563, 2787, 2923, 3235, 3427, 3523, 3763
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[3800], NumberFieldClassNumber[Sqrt[-#]] == 6 &]] (* Jean-François Alcover, Jun 27 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 6};
    for(n=1, 4000, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    [n for n in (1..4000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==6] # G. C. Greubel, Mar 01 2019

Extensions

More terms from Seiichi Manyama, Jun 03 2018

A046007 Discriminants of imaginary quadratic fields with class number 10 (negated).

Original entry on oeis.org

119, 143, 159, 296, 303, 319, 344, 415, 488, 611, 635, 664, 699, 724, 779, 788, 803, 851, 872, 916, 923, 1115, 1268, 1384, 1492, 1576, 1643, 1684, 1688, 1707, 1779, 1819, 1835, 1891, 1923, 2152, 2164, 2363, 2452, 2643, 2776, 2836, 2899, 3028
Offset: 1

Views

Author

Keywords

Comments

87 discriminants in this sequence (almost certainly but not proved).

Crossrefs

Programs

  • Mathematica
    Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[14000], NumberFieldClassNumber[Sqrt[-#]] == 10 &]] (* Jean-François Alcover, Jun 27 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && qfbclassno(-n) == 10} \\ Andrew Howroyd, Jul 24 2018
    
  • Sage
    [n for n in (1..3500) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==10] # G. C. Greubel, Mar 01 2019

A046009 Discriminants of imaginary quadratic fields with class number 12 (negated).

Original entry on oeis.org

231, 255, 327, 356, 440, 516, 543, 655, 680, 687, 696, 728, 731, 744, 755, 804, 888, 932, 948, 964, 984, 996, 1011, 1067, 1096, 1144, 1208, 1235, 1236, 1255, 1272, 1336, 1355, 1371, 1419, 1464, 1480, 1491, 1515, 1547, 1572, 1668, 1720, 1732
Offset: 1

Views

Author

Keywords

Comments

206 discriminants in this sequence (almost certainly but not proved).

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 2000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 12, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && qfbclassno(-n) == 12} \\ Andrew Howroyd, Jul 24 2018
    
  • Sage
    [n for n in (1..3000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==12] # G. C. Greubel, Mar 01 2019

A046011 Discriminants of imaginary quadratic fields with class number 14 (negated).

Original entry on oeis.org

215, 287, 391, 404, 447, 511, 535, 536, 596, 692, 703, 807, 899, 1112, 1211, 1396, 1403, 1527, 1816, 1851, 1883, 2008, 2123, 2147, 2171, 2335, 2427, 2507, 2536, 2571, 2612, 2779, 2931, 2932, 3112, 3227, 3352, 3579, 3707, 3715, 3867, 3988
Offset: 1

Views

Author

Keywords

Comments

There are 95 discriminants in this sequence (almost certainly but not proved).

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 4000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 14, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && qfbclassno(-n) == 14} \\ Andrew Howroyd, Jul 24 2018

A046013 Discriminants of imaginary quadratic fields with class number 16 (negated).

Original entry on oeis.org

399, 407, 471, 559, 584, 644, 663, 740, 799, 884, 895, 903, 943, 1015, 1016, 1023, 1028, 1047, 1139, 1140, 1159, 1220, 1379, 1412, 1416, 1508, 1560, 1595, 1608, 1624, 1636, 1640, 1716, 1860, 1876, 1924, 1983, 2004, 2019, 2040, 2056, 2072
Offset: 1

Views

Author

Keywords

Comments

322 discriminants in this sequence (almost certainly but not proved).

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 3000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 16, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && qfbclassno(-n) == 16} \\ Andrew Howroyd, Jul 24 2018

A046015 Discriminants of imaginary quadratic fields with class number 18 (negated).

Original entry on oeis.org

335, 519, 527, 679, 1135, 1172, 1207, 1383, 1448, 1687, 1691, 1927, 2047, 2051, 2167, 2228, 2291, 2315, 2344, 2644, 2747, 2859, 3035, 3107, 3543, 3544, 3651, 3688, 4072, 4299, 4307, 4568, 4819, 4883, 5224, 5315, 5464, 5492, 5539, 5899
Offset: 1

Views

Author

Keywords

Comments

The class group of Q[sqrt(-d)] is isomorphic to C_3 X C_6 for d = 9748, 12067, 16627, 17131, 19651, 22443, 23683, 34027, 34507. For all other known d in this sequence, the class group of Q[sqrt(-d)] is isomorphic to C_18. - Jianing Song, Dec 01 2019

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 6000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 18, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)

A329182 Negative discriminants with form class group isomorphic to C_2 X C_2 (negated).

Original entry on oeis.org

84, 96, 120, 132, 160, 168, 180, 192, 195, 228, 240, 280, 288, 312, 315, 340, 352, 372, 408, 435, 448, 483, 520, 532, 555, 595, 627, 708, 715, 760, 795, 928, 1012, 1435
Offset: 1

Views

Author

Jianing Song, Dec 05 2019

Keywords

Comments

This sequence is finite and this is the full list.
Equivalently, negative discriminants of orders whose class group is isomorphic to C_2 X C_2 (negated). - Jianing Song, May 17 2021

Crossrefs

Cf. A133675 (negative discriminants with form class group isomorphic to the trivial group), A322710 (isomorphic to C_2), A328825 (isomorphic to C_3), this sequence (isomorphic to C_2 X C_2), A330219 (isomorphic to C_4).
The fundamental terms are listed in A192322. Cf. also A013658.

Programs

  • PARI
    isA329182(d) = (d>0) && ((d%4==0)||(d%4==3)) && quadclassunit(-d)[2]==[2,2] \\ Jianing Song, May 17 2021

A330219 Negative discriminants with form class group isomorphic to C_4 (negated).

Original entry on oeis.org

39, 55, 56, 63, 68, 80, 128, 136, 144, 155, 156, 171, 184, 196, 203, 208, 219, 220, 252, 256, 259, 275, 291, 292, 323, 328, 355, 363, 387, 388, 400, 475, 507, 568, 592, 603, 667, 723, 763, 772, 955, 1003, 1027, 1227, 1243, 1387, 1411, 1467, 1507, 1555
Offset: 1

Views

Author

Jianing Song, Dec 05 2019

Keywords

Comments

It seems that this is the full list.
Equivalently, negative discriminants of orders whose class group is isomorphic to C_4 (negated). - Jianing Song, May 17 2021

Crossrefs

Cf. A133675 (negative discriminants with form class group isomorphic to the trivial group), A322710 (isomorphic to C_2), A328825 (isomorphic to C_3), A329182 (isomorphic to C_2 X C_2), this sequence (isomorphic to C_4).
Subsequence of A133676 and A317987. Cf. also A013658.

Programs

  • PARI
    isA330219(d) = (d>0) && ((d%4==0)||(d%4==3)) && quadclassunit(-d)[2]==[4] \\ Jianing Song, May 17 2021

A123563 Discriminants of imaginary quadratic fields with class number 20 (negated).

Original entry on oeis.org

455, 615, 776, 824, 836, 920, 1064, 1124, 1160, 1263, 1284, 1460, 1495, 1524, 1544, 1592, 1604, 1652, 1695, 1739, 1748, 1796, 1880, 1887, 1896, 1928, 1940, 1956, 2136, 2247, 2360, 2404, 2407, 2483, 2487, 2532, 2552
Offset: 1

Views

Author

Eric W. Weisstein, Nov 19 2006

Keywords

Comments

A finite sequence with exactly 350 terms.

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 3000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 20, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
Previous Showing 21-30 of 44 results. Next