cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 609 results. Next

A243344 a(1) = 1, a(2n) = A013929(a(n)), a(2n+1) = A005117(1+a(n)).

Original entry on oeis.org

1, 4, 2, 12, 6, 8, 3, 32, 19, 18, 10, 24, 13, 9, 5, 84, 53, 50, 31, 49, 30, 27, 15, 63, 38, 36, 21, 25, 14, 16, 7, 220, 138, 136, 86, 128, 82, 81, 51, 126, 79, 80, 47, 72, 42, 44, 23, 162, 103, 99, 62, 96, 59, 54, 34, 64, 39, 40, 22, 45, 26, 20, 11, 564, 365
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2014

Keywords

Comments

This permutation entangles complementary pair odd/even numbers (A005408/A005843) with complementary pair A005117/A013929 (numbers which are squarefree/not squarefree).

Crossrefs

Formula

a(1) = 1, a(2n) = A013929(a(n)), a(2n+1) = A005117(1+a(n)).
For all n, A008966(a(n)) = A000035(n), or equally, mu(a(n)) = n modulo 2, where mu is Moebius mu (A008683). [The same property holds for A088610.]

A243345 a(1)=1; thereafter, if n is k-th squarefree number [i.e., n = A005117(k)], a(n) = 2*a(k-1); otherwise, when n is k-th nonsquarefree number [i.e., n = A013929(k)], a(n) = 2*a(k)+1.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 5, 9, 12, 32, 7, 10, 18, 24, 17, 64, 13, 14, 33, 20, 36, 48, 11, 19, 34, 25, 65, 128, 26, 28, 15, 66, 40, 72, 21, 96, 22, 38, 37, 68, 50, 130, 49, 35, 256, 52, 129, 27, 29, 56, 67, 30, 41, 132, 73, 80, 144, 42, 97, 192, 44, 23, 39, 76, 74, 136, 69, 100
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2014

Keywords

Comments

Any other fixed points than 1, 2, 6, 9, 135, 147, 914, ... ?
Any other points than 4, 21, 39, 839, 4893, 12884, ... where a(n) = n-1 ?

Crossrefs

Formula

a(1) = 1, and for n>1, if mu(n) = 0, a(n) = 1 + 2*a(A057627(n)), otherwise a(n) = 2*a(A013928(n)), where mu is Moebius mu function (A008683).
For all n > 1, A000035(a(n)+1) = A008966(n) = A008683(n)^2, or equally, a(n) = mu(n) + 1 modulo 2.

A376594 Inflection and undulation points in the sequence of nonsquarefree numbers (A013929).

Original entry on oeis.org

5, 11, 12, 13, 17, 19, 20, 25, 33, 37, 39, 40, 41, 47, 53, 57, 62, 70, 71, 76, 81, 82, 83, 88, 92, 93, 96, 98, 103, 109, 113, 118, 123, 130, 131, 133, 137, 139, 146, 149, 154, 155, 156, 161, 165, 168, 169, 174, 179, 180, 183, 187, 188, 189, 193, 201, 211, 213
Offset: 1

Views

Author

Gus Wiseman, Oct 04 2024

Keywords

Comments

These are points at which the second differences (A376593) are zero.

Examples

			The nonsquarefree numbers (A013929) are:
  4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, 52, 54, ...
with first differences (A078147):
  4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, 4, 4, 3, ...
with first differences (A376593):
  -3, 2, 1, -2, 0, 2, -3, 1, -1, 3, 0, 0, 0, -3, 2, -2, 0, 1, 0, 0, 2, -1, -2, 3, ...
with zeros (A376594) at:
  5, 11, 12, 13, 17, 19, 20, 25, 33, 37, 39, 40, 41, 47, 53, 57, 62, 70, 71, 76, ...
		

Crossrefs

The first differences were A078147.
These are the zeros of A376593.
The complement is A376595.
A000040 lists the prime numbers, differences A001223.
A005117 lists squarefree numbers, differences A076259.
A013929 lists nonsquarefree numbers, differences A078147.
A064113 lists positions of adjacent equal prime gaps.
A114374 counts partitions into nonsquarefree numbers.
For inflections and undulations: A064113 (prime), A376602 (composite), A376588 (non-perfect-power), A376597 (prime-power), A376600 (non-prime-power).
For nonsquarefree numbers: A013929 (terms), A078147 (first differences), A376593 (second differences), A376595 (nonzero curvature).

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],!SquareFreeQ[#]&],2],0]

A376595 Points of nonzero curvature in the sequence of nonsquarefree numbers (A013929).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 10, 14, 15, 16, 18, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 38, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 77, 78, 79, 80, 84, 85, 86, 87, 89, 90, 91
Offset: 1

Views

Author

Gus Wiseman, Oct 04 2024

Keywords

Comments

These are points at which the second differences (A376593) are nonzero.

Examples

			The nonsquarefree numbers (A013929) are:
  4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, 52, 54, ...
with first differences (A078147):
  4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, 4, 4, 3, ...
with first differences (A376593):
  -3, 2, 1, -2, 0, 2, -3, 1, -1, 3, 0, 0, 0, -3, 2, -2, 0, 1, 0, 0, 2, -1, -2, 3, ...
with nonzeros (A376594) at:
  1, 2, 3, 4, 6, 7, 8, 9, 10, 14, 15, 16, 18, 21, 22, 23, 24, 26, 27, 28, 29, 30, ...
		

Crossrefs

The first differences were A078147.
These are the nonzeros of A376593.
The complement is A376594.
A000040 lists the prime numbers, differences A001223.
A005117 lists squarefree numbers, differences A076259.
A013929 lists nonsquarefree numbers, differences A078147.
A114374 counts integer partitions into nonsquarefree numbers.
For points of nonzero curvature: A333214 (prime), A376603 (composite), A376589 (non-perfect-power), A376592 (squarefree), A376598 (prime-power), A376601 (non-prime-power).
For nonsquarefree numbers: A078147 (first differences), A376593 (second differences), A376594 (inflections and undulations).

Programs

  • Mathematica
    Join@@Position[Sign[Differences[Select[Range[100],!SquareFreeQ[#]&],2]],1|-1]

A046027 Smallest multiple prime factor of the n-th nonsquarefree number (A013929).

Original entry on oeis.org

2, 2, 3, 2, 2, 3, 2, 2, 5, 3, 2, 2, 2, 2, 2, 3, 2, 7, 5, 2, 3, 2, 2, 3, 2, 2, 2, 5, 2, 2, 3, 2, 2, 3, 2, 2, 7, 3, 2, 2, 2, 2, 2, 3, 2, 11, 2, 5, 3, 2, 2, 3, 2, 2, 2, 7, 2, 5, 2, 3, 2, 2, 3, 2, 2, 13, 3, 2, 5, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 11, 3, 2, 7, 2, 5, 2, 2, 2, 3
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ FactorInteger[#], #[[2]]>1&, 1][[1, 1]]& /@ Select[ Range[300], !SquareFreeQ[#]& ] (* Jean-François Alcover, Nov 06 2012 *)
  • PARI
    lista(nn) = apply(x->factor(x)[1,1], apply(x->x/core(x), select(x->!issquarefree(x), [1..nn]))); \\ Michel Marcus, Jun 24 2025
  • Python
    from math import isqrt
    from sympy import mobius, factorint
    def A046027(n):
        def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        s = factorint(m)
        return next(p for p in sorted(s) if s[p]>1) # Chai Wah Wu, Jul 22 2024
    

Formula

a(n) = A249739(A013929(n)). - Amiram Eldar, Feb 11 2021

A285320 If n == 0 or A008683(n) == 0, then a(n) = 0, otherwise a(n) = 1+a(A048675(n)); number of iterations of A048675 needed before the result is either zero or nonsquarefree number (A013929).

Original entry on oeis.org

0, 1, 2, 3, 0, 1, 4, 1, 0, 0, 2, 1, 0, 1, 1, 5, 0, 1, 0, 1, 0, 3, 2, 1, 0, 0, 2, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 3, 3, 0, 1, 2, 1, 0, 0, 2, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 3, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 3, 2, 1, 0, 1
Offset: 0

Views

Author

Antti Karttunen, Apr 18 2017

Keywords

Comments

Conjecture: all terms are well-defined (finite). This implies also the conjecture I have made in A019565.

Examples

			a(38) = 3 because 38 = 2*19 (thus squarefree), A048675(38) = 129 (= 3*43), A048675(129) = 8194 (= 2*17*241) and A048675(8194) = 4503599627370561 (= 3^2 * 37 * 71 * 190483425427), so three steps were needed before nonsquarefree number was reached.
a(74) >= 3 as A048675(74) = 2049 (squarefree), A048675(2049) =  10633823966279326983230456482242756610 (squarefree), A048675(10633823966279326983230456482242756610) = ???
		

Crossrefs

A left inverse of A109162.
Cf. also A285319, A285331, A285332.

Programs

Formula

If n == 0 or A008683(n) == 0, then a(n) = 0, otherwise a(n) = 1+a(A048675(n)).
a(A109162(n)) = n.

A015051 Let m = A013929(n); then a(n) = smallest k such that m divides k^4.

Original entry on oeis.org

2, 2, 3, 6, 2, 6, 10, 6, 5, 3, 14, 4, 6, 10, 22, 15, 6, 7, 10, 26, 6, 14, 30, 21, 4, 34, 6, 15, 38, 10, 3, 42, 22, 30, 46, 12, 14, 33, 10, 26, 6, 14, 58, 39, 30, 11, 62, 5, 42, 4, 66, 15, 34, 70, 6, 21, 74, 30, 38, 51, 78, 20, 6, 82, 42, 13, 57, 86
Offset: 1

Views

Author

R. Muller

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Ceiling[e/4]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; s /@ Select[Range[200], !SquareFreeQ[#] &] (* Amiram Eldar, Feb 10 2021 *)
  • PARI
    lista(kmax) = {my(f); for(k = 2, kmax, f = factor(k); if(!issquarefree(f), print1(prod(i = 1, #f~, f[i,1]^ceil(f[i,2]/4)), ", ")));} \\ Amiram Eldar, Jan 06 2024

Formula

a(n) = A053166(A013929(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2) * (zeta(2) * zeta(7) * Product_{p prime} (1-1/p^2+1/p^3-1/p^4+1/p^5-1/p^6) - 1)/(zeta(2)-1)^2 = 0.635465442379... . - Amiram Eldar, Jan 06 2024

Extensions

Description corrected by Diego Torres (torresvillarroel(AT)hotmail.com), Jun 23 2002
Offset corrected by Amiram Eldar, Feb 10 2021

A162966 Union of 1 and nonsquarefree numbers (A013929).

Original entry on oeis.org

1, 4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, 52, 54, 56, 60, 63, 64, 68, 72, 75, 76, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 120, 121, 124, 125, 126, 128, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160
Offset: 1

Views

Author

Jaroslav Krizek, Jul 19 2009

Keywords

Comments

Or, the natural numbers that are not products of distinct primes. Also, number of prime divisors of n < number of nonprime divisors of n. - Juri-Stepan Gerasimov, Nov 10 2009

Crossrefs

Cf. A013929.

Programs

  • Mathematica
    t = {1}; Do[If[Max[Transpose[FactorInteger[n]][[2]]] > 1, AppendTo[t, n]], {n, 2, 160}]; t (* Jayanta Basu, Apr 30 2013 *)
  • PARI
    is(n)=!issquarefree(n)||n==1 \\ Charles R Greathouse IV, Apr 04 2014

A378373 Number of composite numbers (A002808) between consecutive nonsquarefree numbers (A013929), exclusive.

Original entry on oeis.org

1, 0, 1, 2, 0, 0, 2, 0, 1, 0, 1, 3, 2, 1, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 2, 2, 1, 0, 2, 0, 1, 3, 0, 1, 3, 0, 0, 0, 1, 2, 2, 2, 0, 2, 0, 2, 0, 0, 0, 2, 2, 0, 1, 3, 2, 0, 0, 0, 0, 2, 2, 1, 0, 2, 0, 1, 0, 1, 0, 2, 2, 3, 0, 1, 2, 0, 0, 3, 2, 0, 2, 3, 3, 2, 0, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2024

Keywords

Comments

All terms are 0, 1, 2, or 3 (cf. A078147).
The inclusive version is a(n) + 2.
The nonsquarefree numbers begin: 4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, ...

Examples

			The composite numbers counted by a(n) form the following set partition of A120944:
{6}, {}, {10}, {14,15}, {}, {}, {21,22}, {}, {26}, {}, {30}, {33,34,35}, {38,39}, ...
		

Crossrefs

For prime (instead of nonsquarefree) we have A046933.
For squarefree (instead of nonsquarefree) we have A076259(n)-1.
For prime power (instead of nonsquarefree) we have A093555.
For prime instead of composite we have A236575.
For nonprime prime power (instead of nonsquarefree) we have A378456.
For perfect power (instead of nonsquarefree) we have A378614, primes A080769.
A002808 lists the composite numbers.
A005117 lists the squarefree numbers, differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147.
A073247 lists squarefree numbers with nonsquarefree neighbors.
A120944 lists squarefree composite numbers.
A377432 counts perfect-powers between primes, zeros A377436.
A378369 gives distance to the next nonsquarefree number (A120327).

Programs

  • Mathematica
    v=Select[Range[100],!SquareFreeQ[#]&];
    Table[Length[Select[Range[v[[i]]+1,v[[i+1]]-1],CompositeQ]],{i,Length[v]-1}]

A015049 Let m = A013929(n); then a(n) = smallest k such that m divides k^2.

Original entry on oeis.org

2, 4, 3, 6, 4, 6, 10, 12, 5, 9, 14, 8, 6, 20, 22, 15, 12, 7, 10, 26, 18, 28, 30, 21, 8, 34, 12, 15, 38, 20, 9, 42, 44, 30, 46, 24, 14, 33, 10, 52, 18, 28, 58, 39, 60, 11, 62, 25, 42, 16, 66, 45, 68, 70, 12, 21, 74, 30, 76, 51, 78, 40, 18, 82, 84, 13, 57, 86
Offset: 1

Views

Author

R. Muller

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Ceiling[e/2]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; s /@ Select[Range[200], !SquareFreeQ[#] &] (* Amiram Eldar, Feb 10 2021 *)
  • PARI
    lista(kmax) = {my(f); for(k = 2, kmax, f = factor(k); if(!issquarefree(f), print1(k/core(f, 1)[2], ", ")));} \\ Amiram Eldar, Jan 06 2024

Formula

a(n) = A019554(A013929(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2)*(zeta(3)-1)/(zeta(2)-1)^2 = 0.799082... . - Amiram Eldar, Jan 06 2024

Extensions

Description corrected by Diego Torres (torresvillarroel(AT)hotmail.com), Jun 23 2002
Offset corrected by Amiram Eldar, Feb 10 2021
Previous Showing 11-20 of 609 results. Next