cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A000156 Number of ways of writing n as a sum of 24 squares.

Original entry on oeis.org

1, 48, 1104, 16192, 170064, 1362336, 8662720, 44981376, 195082320, 721175536, 2319457632, 6631997376, 17231109824, 41469483552, 93703589760, 200343312768, 407488018512, 793229226336, 1487286966928, 2697825744960, 4744779429216
Offset: 0

Views

Author

Keywords

Comments

The Carlitz paper has the wrong formula on p. 505, eq. (3). The factor in front of tau(n/2) should be -2^16 (not -2^12). The mistake appeared in the previous equation derived from eq. (2) where theta_3^(24) * 256*k^4*k'^4 was replaced by 2^8*g(q^2) which produces the factor 2^8*256 = 2^16. (One should subtract on p. 504 the second equation in the middle from the negative of the first equation. There is also a sign mistake in the sum term of the third equation from the bottom.) - Wolfdieter Lang, Sep 24 2016

References

  • Avner Ash and Robert Gross, Summing it up, Princeton University Press, 2016, p. 195, eq. (15.1).
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 107.
  • G. H. Hardy, Ramanujan, 1940, Cambridge, reprinted with additional corrections and comments by AMS Chelsea Publishing, 1999, 2002, Providence, Rhode Island, ch. IX., pp. 153-155.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 314.

Crossrefs

Row d=24 of A122141 and of A319574, 24th column of A286815.

Programs

  • Maple
    (sum(x^(m^2),m=-10..10))^24; seq(coeff(%,x,n), n=0..30);
    # Alternative:
    A000156list := proc(len) series(JacobiTheta3(0, x)^24, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end: A000156list(21); # Peter Luschny, Oct 02 2018
  • Mathematica
    Table[SquaresR[24, n], {n, 0, 20}] (* Ray Chandler, Nov 28 2006 *)
  • PARI
    first(n)=my(x='x); x+=O(x^(n+1)); Vec((2*sum(k=1,sqrtint(n),x^k^2) + 1)^24) \\ Charles R Greathouse IV, Jul 29 2016

Formula

From Wolfdieter Lang, Sep 24 2016: (Start)
For n >= 1: a(n) = (16*sigma^*{11} - 128*(512*tau(n/2) + (-1)^n*259*tau(n)))/691, with sigma^*{11} = sigma_{11}^{e}(n) - sigma_{11}^{o}(n) if n even and sigma_{11}(n) otherwise. Here sigma_{11}(n) = A013959(n) and 0 if n is not an integer, sigma_{11}^{e}(n) and sigma_{11}^{o}(n) are the sums of the 11th power of the odd and even positive divisors of n, respectively. Ramanujan's tau(n) = A000594(n) and 0 if n is not an integer. This is from Hardy, ch. IX., p. 155, eqs. (9.17.1) and (9.17.2), and p.142 for the definition of sigma^*_{nu}(n). See also the Ash and Gross reference.
Another version, see the corrected Carlitz reference:
a(n) = (2^4*(sigma_{11}(n)- 2*sigma_{11}(n/2) + 2^{12}*sigma_{11}(n/4)) - 2^7*259*(-1)^n*tau(n) - 2^16*tau(n/2))/691, n >= 1.
(End)
a(n) = (48/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017

Extensions

Extended by Ray Chandler, Nov 28 2006

A282548 Expansion of phi_{12, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 4098, 531444, 16785412, 244140630, 2177857512, 13841287208, 68753047560, 282431130813, 1000488301740, 3138428376732, 8920506494928, 23298085122494, 56721594978384, 129747072969720, 281612482805776, 582622237229778, 1157402774071674
Offset: 0

Views

Author

Seiichi Manyama, Feb 18 2017

Keywords

Comments

Multiplicative because A013959 is. - Andrew Howroyd, Jul 25 2018

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), A282050 (phi_{6, 1}), A282060 (phi_{8, 1}), A282254 (phi_{10, 1}), this sequence (phi_{12, 1}).
Cf. A282549 (E_2*E_4^3), A282576 (E_2*E_6^2), A058550 (E_14).
Cf. A013670.

Programs

  • Mathematica
    Table[n * DivisorSigma[11, n], {n, 0, 18}] (* Amiram Eldar, Sep 06 2023 *)
  • PARI
    a(n) = if(n < 1, 0, n*sigma(n, 11)) \\ Andrew Howroyd, Jul 25 2018

Formula

a(n) = n*A013959(n) for n > 0.
a(n) = (441*A282549(n) + 250*A282576(n) - 691*A058550(n))/65520.
Sum_{k=1..n} a(k) ~ zeta(12) * n^13 / 13. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(11*e+11)-1)/(p^11-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-12). (End)

A321815 Sum of 11th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 177148, 1, 48828126, 177148, 1977326744, 1, 31381236757, 48828126, 285311670612, 177148, 1792160394038, 1977326744, 8649804864648, 1, 34271896307634, 31381236757, 116490258898220, 48828126, 350279478046112, 285311670612, 952809757913928
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=11 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • GAP
    List(List(List([1..25],j->DivisorsInt(j)),i->Filtered(i,k->IsOddInt(k))),m->Sum(m,n->n^11)); # Muniru A Asiru, Dec 07 2018
    
  • Mathematica
    a[n_] := DivisorSum[n, #^11&, OddQ[#]&]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321815(n)=sigma(n>>valuation(n,2),11), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321815(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),11)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013959(A000265(n)) = sigma_11(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^11*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(11*e+11)-1)/(p^11-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^12, where c = zeta(12)/24 = 691*Pi^12/15324309000 = 0.0416769... . (End)

A055715 Numbers k such that k | sigma_11(k).

Original entry on oeis.org

1, 6, 28, 120, 402, 496, 644, 672, 920, 1366, 1608, 1932, 2680, 2760, 3417, 3966, 4098, 4623, 4975, 5152, 6210, 6834, 8040, 8128, 8280, 9246, 9528, 9950, 12294, 13668, 15008, 15456, 15864, 16392, 18492, 19900, 24120, 24840, 25954, 27320, 27336, 29850, 30240, 32760
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

sigma_11(k) is the sum of the 11th powers of the divisors of k (A013959).

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[11, n], n]==0, Print[n]], {n, 1, 40000}]
  • PARI
    isok(k) = (sigma(k, 11) % k) == 0; \\ Michel Marcus, Nov 09 2019

Extensions

a(37)-a(40) corrected and more terms added by Amiram Eldar, Nov 09 2019

A126846 Ramanujan numbers (A000594) read mod 23^2.

Original entry on oeis.org

1, 505, 252, 115, 69, 300, 184, 369, 92, 460, 322, 414, 459, 345, 460, 22, 161, 437, 483, 0, 345, 207, 254, 413, 162, 93, 116, 0, 344, 69, 229, 230, 207, 368, 0, 0, 207, 46, 346, 69, 160, 184, 138, 0, 0, 252, 459, 254, 139, 344, 368, 414, 253, 390, 0, 184, 46, 208, 71, 0
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], 529]; Array[a, 100] (* Amiram Eldar, Jan 05 2025 *)
  • PARI
    a(n) = ramanujantau(n) % 529; \\ Amiram Eldar, Jan 05 2025

Formula

a(p) == sigma_11(p) (mod 23^2) for prime p of the form u^2 + 23*v^2, u >= 1 (Serre, 1968). - Amiram Eldar, Jan 05 2025

A055705 Numbers k such that k | sigma_11(k) - phi(k)^11.

Original entry on oeis.org

1, 2, 10, 12, 82, 168, 952, 1716, 2732, 2970, 5627, 8185, 11400, 12871, 20104, 20368, 23526, 25749, 70176, 82920, 111194, 117151, 119160, 128790, 134670, 143136, 185140, 193020, 208352, 240408, 247995, 251856, 291368, 354588, 565768, 592006, 642600, 783315
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

sigma_11(k) is the sum of the 11th powers of the divisors of k (A013959).

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[11, n]-EulerPhi[n]^11, n]==0, Print[n]], {n, 10^5}]
    Select[Range[800000],Divisible[DivisorSigma[11,#]-EulerPhi[#]^11,#]&] (* Harvey P. Dale, Apr 15 2018 *)
  • PARI
    isok(n) = !((sigma(n, 11) - eulerphi(n)^11) % n); \\ Michel Marcus, Mar 02 2014

Extensions

Definition corrected and more terms from Michel Marcus, Mar 02 2014

A126818 Ramanujan numbers (A000594) read mod 256.

Original entry on oeis.org

1, 232, 252, 64, 222, 96, 152, 0, 21, 48, 84, 0, 54, 192, 136, 0, 178, 8, 44, 128, 160, 32, 72, 0, 167, 240, 152, 0, 102, 64, 96, 0, 176, 80, 208, 64, 62, 224, 40, 0, 122, 0, 180, 0, 54, 64, 16, 0, 169, 88, 56, 128, 110, 192, 216, 0, 80, 112, 228, 0, 198, 0, 120, 0, 212, 128, 188
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], 256]; Array[a, 100] (* Amiram Eldar, Jan 05 2025 *)
  • PARI
    a(n) = ramanujantau(n) % 256; \\ Amiram Eldar, Jan 05 2025

Formula

a(n) == sigma_11(n) (mod 256) for n odd (Bambah and Chowla, 1947; Andrews and Berndt, 2012, eq. (5.12.26), p. 118). - Amiram Eldar, Jan 05 2025

A126821 Ramanujan numbers (A000594) read mod 2048.

Original entry on oeis.org

1, 2024, 252, 576, 734, 96, 1688, 512, 1045, 816, 84, 1792, 1846, 448, 648, 0, 1970, 1544, 1580, 896, 1440, 32, 328, 0, 423, 752, 408, 1536, 1126, 832, 1376, 0, 688, 1872, 2000, 1856, 1342, 992, 296, 1024, 890, 256, 1716, 1280, 1078, 320, 1808, 0, 1449, 88, 824, 384
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

References

  • Oddmund Kolberg, Congruences for Ramanujan's Function ̈tau(n), Univ. Bergen Årbok Naturvit Rekke, No. 11, 1962.

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], 2048]; Array[a, 100] (* Amiram Eldar, Jan 05 2025 *)
  • PARI
    a(n) = ramanujantau(n) % 2048; \\ Amiram Eldar, Jan 05 2025

Formula

From Amiram Eldar, Jan 05 2025: (Start)
a(n) == sigma_11(n) (mod 2048) for n == 1 (mod 8) (Kolberg, 1962).
a(n) == 24 * sigma_11(n) (mod 2048) (Andrews and Berndt, 2012, p. 118). (End)

A126822 Ramanujan numbers (A000594) read mod 4096.

Original entry on oeis.org

1, 4072, 252, 2624, 734, 2144, 3736, 2560, 1045, 2864, 2132, 1792, 3894, 448, 648, 0, 4018, 3592, 3628, 896, 3488, 2080, 2376, 2048, 2471, 752, 2456, 1536, 1126, 832, 3424, 0, 688, 1872, 2000, 1856, 1342, 3040, 2344, 3072, 2938, 2304, 3764, 3328, 1078, 320
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

References

  • Oddmund Kolberg, Congruences for Ramanujan's Function ̈tau(n), Univ. Bergen Årbok Naturvit Rekke, No. 11, 1962.

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], 4096]; Array[a, 100] (* Amiram Eldar, Jan 05 2025 *)
  • PARI
    a(n) = ramanujantau(n) % 4096; \\ Amiram Eldar, Jan 05 2025

Formula

a(n) == 1537 * sigma_11(n) (mod 4096) for n == 5 (mod 8) (Kolberg, 1962). - Amiram Eldar, Jan 05 2025

A126823 Ramanujan numbers (A000594) read mod 8192.

Original entry on oeis.org

1, 8168, 252, 6720, 4830, 2144, 7832, 2560, 1045, 6960, 2132, 5888, 3894, 448, 4744, 4096, 8114, 7688, 3628, 896, 7584, 6176, 6472, 6144, 2471, 4848, 6552, 5632, 5222, 832, 3424, 0, 4784, 1872, 6096, 1856, 1342, 3040, 6440, 3072, 2938, 6400, 3764, 7424, 1078
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

References

  • Oddmund Kolberg, Congruences for Ramanujan's Function ̈tau(n), Univ. Bergen Årbok Naturvit Rekke, No. 11, 1962.

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], 8192]; Array[a, 100] (* Amiram Eldar, Jan 05 2025 *)
  • PARI
    a(n) = ramanujantau(n) % 8192; \\ Amiram Eldar, Jan 05 2025

Formula

a(n) == 1217 * sigma_11(n) (mod 8192) for n == 3 (mod 8) (Kolberg, 1962). - Amiram Eldar, Jan 05 2025
Previous Showing 11-20 of 26 results. Next