A282331
Coefficients in q-expansion of E_6^4, where E_6 is the Eisenstein series A013973.
Original entry on oeis.org
1, -2016, 1457568, -411997824, 16227967392, 6497071680960, 440015323483008, 15172068869975808, 327221898778968480, 4913597307075535008, 55440561879404210880, 496424806634688962688, 3672744471642078903168, 23148319448757751932096
Offset: 0
-
terms = 14;
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E6[x]^4 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282357
Coefficients in q-expansion of E_4^2*E_6^3, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
Original entry on oeis.org
1, -1032, 48312, 171162336, -6444771144, -10105554483504, -1037089473751584, -48959817978105408, -1378102838778701640, -26186640301645703016, -364779940958775418032, -3952291567255306906464, -34798629548716507265568, -257403564989318828310384
Offset: 0
Cf.
A008410 (E_4^2 = E_8),
A058550 (E_4^2*E_6 = E_14),
A282292 (E_4^2*E_6^2 = E_10^2), this sequence (E_4^2*E_6^3).
-
terms = 14;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^2*E6[x]^3 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282382
Coefficients in q-expansion of E_4^6*E_6, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
Original entry on oeis.org
1, 936, 134568, -173988576, -104617833048, -27210540914064, -3910401774129888, -322823174243838912, -15429983442476298840, -469709326015243815672, -9973673112569954220432, -158215072218253260221088, -1972939697011615168926432
Offset: 0
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^6*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282403
Coefficients in q-expansion of E_4^4*E_6^2, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
Original entry on oeis.org
1, -48, -392688, -67089216, 37279185936, 15066490704480, 2098369148842944, 134803101024250752, 4960096515113176080, 119289357755096403984, 2051412780505054295520, 26894040676649639982144, 281804014682888704101312
Offset: 0
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^4* E6[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282433
Coefficients in q-expansion of E_6^5, where E_6 is the Eisenstein series A013973.
Original entry on oeis.org
1, -2520, 2457000, -1113204960, 199879986600, 4992350445936, -3054519828108000, -316433406335739840, -15444821445342229080, -469944493113793897080, -9973874479528786860432, -158211337782226162119840, -1972932224893221543809760
Offset: 0
-
terms = 13;
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E6[x]^5 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282461
Coefficients in q-expansion of E_4^3*E_6^3, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
Original entry on oeis.org
1, -792, -197208, 180534816, 34731625896, -11282282306064, -3475192229286624, -319729598062193088, -15436589476561121880, -469831003553540798136, -9973761497118317484432, -158213220814147434639264, -1972935965978751882433248
Offset: 0
Cf.
A013974 (E_4*E_6 = E_10),
A282292 (E_4^2*E_6^2 = E_10^2), this sequence (E_4^3*E_6^3 = E_10^3).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^3* E6[x]^3 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A319134
Expansion of -((25*E_4^4 - 49*E_6^2*E4) + 48*E_6*E_4^2*E_2 + (-49*E_4^3 + 25*E_6^2)*E_2^2)/(3657830400*delta^2) where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively and delta is A000594.
Original entry on oeis.org
1, 86, 3750, 109672, 2419462, 43021728, 643548464, 8343640624, 95835049605, 991606081332, 9364586280842, 81571540591968, 661034448807902, 5019357866562208, 35927279225314344, 243657157464337888, 1572638456431119570, 9696997279843999470, 57313953586222481126, 325672739267123628976
Offset: 1
((25*E_4^4 - 49*E_6^2*E4) + 48*E_6*E_4^2*E_2 + (-49*E_4^3 + 25*E_6^2)*E_2^2)/(delta^2) = - 3657830400*q - 314573414400*q^2 - 13716864000000*q^3 - 401161575628800*q^4 - ... .
- Seiichi Manyama, Table of n, a(n) for n = 1..5000
- H. Cohn, A. Kumar, S. Miller, D. Radchenko, M. Viazovska, The sphere packing problem in dimension 24, Annals of Mathematics, 185 (3) (2017), 1017-1033.
- Wikipedia, Sphere packing
-
nmax = 25; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, nmax + 1}] + O[x]^(nmax + 1); E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, nmax + 1}] + O[x]^(nmax + 1); E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, nmax + 1}] + O[x]^(nmax + 1); Rest[CoefficientList[Series[-((25*E4[x]^4 - 49*E6[x]^2*E4[x]) + 48*E6[x]*E4[x]^2*E2[x] + (-49*E4[x]^3 + 25*E6[x]^2)* E2[x]^2) / (3657830400 * x^2 * QPochhammer[x]^48), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 12 2018 *)
A282404
Coefficients in q-expansion of E_4*E_6^4, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
Original entry on oeis.org
1, -1776, 975888, -66529344, -79516693488, 9511628122080, 2031621786790848, 134911299030780288, 4962883791154433040, 119289719378991436368, 2051366007318600561120, 26893975935849646148928, 281804567385216854182848
Offset: 0
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]*E6[x]^4 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282541
Coefficients in q-expansion of E_4^5*E_6^2, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
Original entry on oeis.org
1, 192, -402048, -161431296, 20329262976, 23865942948480, 5794392238723584, 671204645516954112, 41947216018774335360, 1615253348424607402944, 42337765240473386384640, 812656088633074046171904, 12060155362281020231526912
Offset: 0
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^5* E6[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282543
Coefficients in q-expansion of E_4^2*E_6^4, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
Original entry on oeis.org
1, -1536, 551808, 163854336, -93387735168, -9709554816000, 4142226444876288, 642510156233453568, 41792421673548259200, 1615606968766288470528, 42343208407470359036160, 812663841518551604717568, 12060089370317565140003328
Offset: 0
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^2*E6[x]^4 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)