cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A226964 Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 6 (mod n).

Original entry on oeis.org

1, 3, 4, 20, 36, 252, 10836
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that B(n)*n == 6 (mod n), where B(n) is the n-th Bernoulli number. Equivalently, SUM[prime p, (p-1) divides n] n/p == -6 (mod n). There are no other terms below 10^15. - Max Alekseyev, Aug 26 2013

Crossrefs

Cf. A031971.
Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962 (m=4), A226963 (m=5), this sequence (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).

Programs

  • Mathematica
    Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 6 &]
  • PARI
    is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-6 \\ Charles R Greathouse IV, Nov 13 2013

Extensions

1,3,4 prepended by Max Alekseyev, Aug 26 2013

A226965 Numbers n such that 1^n + 2^n + 3^n +...+ n^n == 7 (mod n).

Original entry on oeis.org

1, 2, 6, 7, 14, 294, 12642
Offset: 1

Views

Author

Keywords

Comments

Also, integers n such that B(n)*n == 7 (mod n), where B(n) is the n-th Bernoulli number, or SUM[prime p, (p-1) divides n] n/p == -7 (mod n). It is easy to see that for n>1, every prime divisor p of n, except p=7, must appear in first power, while p=7 may appear in first or second power. Moreover, the multiset P of prime divisors of all such n satisfies the property: if p is in P, then p-1 is the product of distinct elements of P. This multiset is P = {2, 3, 7, 7, 43}, implying that the sequence is finite and complete. - Max Alekseyev, Aug 25 2013

Crossrefs

Cf. A031971.
Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962(m=4), A226963 (m=5), A226964 (m=6), this sequence (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).

Programs

  • Mathematica
    Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 7&]
  • PARI
    is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-7 \\ Charles R Greathouse IV, Nov 13 2013

Extensions

Corrected and keywords full,fini added by Max Alekseyev, Aug 25 2013

A226966 Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 8 (mod n).

Original entry on oeis.org

1, 16, 48, 336, 14448
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that B(n)*n == 8 (mod n), where B(n) is the n-th Bernoulli number. Equivalently, SUM[prime p, (p-1) divides n] n/p == -8 (mod n). There are no other terms below 10^15. - Max Alekseyev, Aug 26 2013

Crossrefs

Cf. A031971.
Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962(m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), this sequence (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).

Programs

  • Mathematica
    Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 8 &]
  • PARI
    is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-8 \\ Charles R Greathouse IV, Nov 13 2013

Extensions

a(1)=1 prepended by Max Alekseyev, Aug 26 2013

A302343 Solutions to the congruence 1^n + 2^n + ... + n^n == 79 (mod n).

Original entry on oeis.org

1, 2, 6, 79, 158, 474, 3318, 142674
Offset: 1

Views

Author

Max Alekseyev, Apr 05 2018

Keywords

Comments

Also, integers n such that B(n)*n == 79 (mod n), where B(n) is the n-th Bernoulli number.
Also, integers n such that Sum_{prime p, (p-1) divides n} n/p == -79 (mod n).
Although this sequence is finite, the prime 79 does not belong to A302345.

Crossrefs

Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962 (m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), this sequence (m=79), A302344 (m=193).
Cf. A302345.

A302344 Solutions to the congruence 1^n + 2^n + ... + n^n == 193 (mod n).

Original entry on oeis.org

1, 2, 6, 193, 386, 1158, 8106, 348558
Offset: 1

Views

Author

Max Alekseyev, Apr 05 2018

Keywords

Comments

Also, integers n such that B(n)*n == 193 (mod n), where B(n) is the n-th Bernoulli number.
Also, integers n such that Sum_{prime p, (p-1) divides n} n/p == -193 (mod n).
Although this sequence is finite, the prime 193 does not belong to A302345.

Crossrefs

Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962 (m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), this sequence (m=193).
Cf. A302345.

A106741 Numbers n such that n divides the denominator of 2n-th Bernoulli number.

Original entry on oeis.org

1, 2, 3, 6, 10, 21, 30, 42, 78, 110, 210, 330, 390, 546, 903, 930, 1218, 1806, 1830, 2310, 2530, 2730, 4134, 4290, 6090, 6162, 6510, 7590, 9030, 10230, 12090, 12246, 12810, 14910, 15834, 20130, 20670, 22110, 23478, 23790, 28938, 30030, 30810, 43134
Offset: 1

Views

Author

Benoit Cloitre, May 15 2005

Keywords

Comments

Numbers n such that the congruence k^(2n+1) == k (mod n) is true for 1<=k<=n. - Michel Lagneau, May 02 2012
In 2005, B. C. Kellner proved E. W. Weisstein's conjecture that denom(B_n) = n only if n = 1806. - Jonathan Sondow, Oct 14 2013.

Crossrefs

Programs

  • Maple
    for n from 1 to 10000 do:
        m:=2*n+1: i:=1:
        for k from 1 to n while(k &^ m mod n =k) do: i:=i+1: od:
        if i=n then print(n) fi:
    od: # Michel Lagneau, May 02 2012
    A106741_list := proc(searchlimit) local isA106741, i;
    isA106741 := proc(n)
      numtheory[divisors](2*n);
      map(i->i+1,%);
      select(isprime,%);
      mul(i,i=%) mod n = 0;
      if % then n else NULL fi end:
    seq(isA106741(i),i=1..searchlimit) end:
    A106741_list(30000); # Peter Luschny, May 04 2012
  • Mathematica
    okQ[n_] := AllTrue[Range[n], PowerMod[#, 2n+1, n] == Mod[#, n]&];
    Reap[For[n = 1, n < 50000, n++, If[okQ[n], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jun 11 2019, after Michel Lagneau *)
  • PARI
    is_A106741(n)=denominator(bernfrac(2*n))%n==0 \\ Charles R Greathouse IV, May 02 2012
    
  • PARI
    { for (n=1, 10^6, m = 2*n + 1; for (k=2, n, if ( Mod(k,n)^m != k,  next(2) ); ); print1(n,", "); ); } /* Joerg Arndt, May 04 2012 */
    
  • PARI
    is_A106741(n)={ my(m=2*n+1); for(k=2, n, Mod(k, n)^m - k & return); 1} /* more than twice faster (in PARI 2.4.2) than with "if(...)" */ \\ M. F. Hasler, May 06 2012

Extensions

Terms a(19)-a(29) from Michel Lagneau, May 02 2012
Terms >= 10230 by Joerg Arndt, May 04 2012

A108497 Triangle read by rows: T(n,k) = k^(n+1)-k mod n, showing 1<=k<=n.

Original entry on oeis.org

0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 5, 6, 2, 0, 0, 6, 0, 4, 0, 2, 0, 0, 0, 5, 6, 0, 8, 3, 0, 2, 0, 0, 6, 4, 0, 0, 0, 6, 4, 0, 0, 0, 2, 6, 1, 9, 8, 9, 1, 6, 2, 0, 0, 6, 0, 0, 0, 6, 0, 0, 0, 6, 0, 0, 0, 2, 6, 12, 7, 4, 3, 4, 7, 12, 6, 2, 0, 0, 6, 10, 4, 8, 0, 0, 0, 6, 10, 4, 8
Offset: 1

Views

Author

Henry Bottomley, Jun 06 2005

Keywords

Examples

			Rows start: 0; 0,0; 0,2,0; 0,2,0,0; 0,2,1,2,0; 0,0,0,0,0,0; 0,2,6,5,6,2,0; etc.
T(7,3) = 3^(7+1)-3 mod 7 = 6558 mod 7 = 6.
		

Crossrefs

Formula

T(n, k+n)=T(n, k). T(n, 0)=T(n, 1)=T(n, n)=T(1, k)=T(2, k)=T(6, k)=T(42, k)=T(1806, k)=0.

A108499 Number of values of k (1<=k<=n) where k^(n+1) = k mod n, or equivalently where sum_i{1<=i<=n} k^i = 0 mod n.

Original entry on oeis.org

1, 2, 2, 3, 2, 6, 2, 5, 4, 6, 2, 9, 2, 6, 4, 9, 2, 14, 2, 15, 8, 6, 2, 15, 6, 6, 10, 9, 2, 18, 2, 17, 4, 6, 4, 21, 2, 6, 8, 25, 2, 42, 2, 9, 8, 6, 2, 27, 8, 22, 4, 15, 2, 38, 12, 15, 8, 6, 2, 45, 2, 6, 16, 33, 4, 18, 2, 15, 4, 18, 2, 35, 2, 6, 12, 9, 4, 42, 2, 45, 28, 6, 2, 63, 4, 6, 4, 15, 2, 42, 4
Offset: 1

Views

Author

Henry Bottomley, Jun 06 2005

Keywords

Examples

			a(2)=2 since 1^3 = 1 mod 2 and 2^3 = 8 = 0 mod 2 = 2 mod 2.
a(3)=2 since 1^1+1^2+1^3 = 3 = 0 mod 3 and 3^1+3^2+3^3 = 39 = 0 mod 3 but 2^1+2^2+2^3 = 14 = 2 mod 3 != 0 mod 3.
		

Crossrefs

Numbers of zeros in rows of A108497 or A108498.

Formula

a(n)=n-A108500(n). a(n)=n iff n is in A014117.

A226872 1 together with even numbers n >= 2 such that 1^n + 2^n + 3^n + ... + n^n == n/2 (mod n).

Original entry on oeis.org

1, 2, 4, 8, 10, 14, 16, 22, 26, 28, 32, 34, 38, 44, 46, 50, 52, 56, 58, 62, 64, 68, 70, 74, 76, 82, 86, 88, 92, 94, 98, 104, 106, 112, 116, 118, 122, 124, 128, 130, 134, 136, 142, 146, 148, 152, 154, 158, 164, 166, 170, 172, 176, 178, 182, 184, 188, 190, 194, 196
Offset: 1

Views

Author

Keywords

Comments

For n>1, a(n) is even. Alternatively, the even terms of this sequence can be characterized in any of the following ways: (i) even integers n such that n*B(n) == n/2 (mod n), where B(n) is the n-th Bernulli number; OR (ii) integers n such that gcd(n,A027642(n)) = 2; OR (iii) even integers n such that (p-1) does not divide n for every odd prime p dividing n (cf. A124240). - Max Alekseyev, Sep 05 2013

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[200], Mod[Sum[PowerMod[k, #, #], {k, #}], #] == #/2 &]] (* T. D. Noe, Sep 04 2013 *)
  • PARI
    is(n)=if(n%2,return(n==1));my(f=factor(n)[,1]);for(i=2,#f,if(n%(f[i]-1)==0,return(0)));1 \\ Charles R Greathouse IV, Sep 04 2013

A341858 Numbers k such that psi(k^2) = k, psi = A002322; indices of 1 in A341857.

Original entry on oeis.org

1, 2, 4, 6, 12, 20, 42, 60, 84, 156, 220, 420, 660, 780, 1092, 1806, 1860, 2436, 3612, 3660, 4620, 5060, 5460, 8268, 8580, 12180, 12324, 13020, 15180, 18060, 20460, 24180, 24492, 25620, 29820, 31668, 40260, 41340, 44220, 46956, 47580, 57876, 60060, 61620, 86268, 88620
Offset: 1

Views

Author

Jianing Song, Feb 21 2021

Keywords

Comments

For all k we have k divides psi(k^2). This sequence gives those k such that the quotient is 1.
Apart from 5 exceptional terms, every term is the product of 4 and distinct odd primes. The exceptional terms are precisely the 5 terms in A014117.
Except for k = 1, 2, 6, 42, 1806, k is a term if and only if k = 4*(p_1)*(p_2)*...*(p_m), where p_1 < p_2 < ... < p_m are odd primes, (p_i)-1 | 4*(p_1)*(p_2)*...*(p_(i-1)) for all 1 <= i <= m.
The LCM of two terms is again in this sequence.
Is this sequence infinite? If this sequence is finite, it means that there exists a term of the form k = 4*(p_1)*(p_2)*...*(p_s), where p_1 < p_2 < ... < p_s are odd primes such that: for every (e_0, e_1, ..., e_s) in {0, 1}^(s+1), 2^((e_0)+1)*(p_1)^(e_1)*(p_2)^(e_2)*...*(p_s)^(e_s)+1 is either composite or equal to some p_i. That term must be divisible by all other terms, since there are no more odd primes q other than p_1, p_2, ..., p_s such that q-1 | k.
Numbers k such that b^k == 1 (mod k^2) for every b coprime to k. Proof: these are numbers k such that psi(k^2) divides k, which holds if and only if psi(k^2) = k. Subsequence of A124240 (see my comment there). If k is a term of the sequence and k+1 is prime, then k*(k+1) is also a term. - Thomas Ordowski, Jul 26 2024

Examples

			1092 = 4 * 3 * 7 * 13 is a term since 3-1 | 4, 7-1 | 4*3 and 13-1 | 4*3*7. Indeed, we have psi(1092^2) = 1092.
5060 = 4 * 5 * 11 * 23 is a term since 5-1 | 4, 11-1 | 4*5 and 23-1 | 4*5*11.
		

Crossrefs

A229289 gives the set of prime factors of the terms.
Subsequence of A124240.

Programs

  • Mathematica
    Select[Range[10^5], CarmichaelLambda[#^2] == # &] (* Paolo Xausa, Mar 11 2024 *)
  • PARI
    isA341858(n) = (A002322(n^2)==n) \\ See A002322 for its program
Previous Showing 21-30 of 42 results. Next