cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 69 results. Next

A320000 Square array A(n, k) read by descending antidiagonals: A(1, 1) = 2, A(1, k) = 1 for k > 1, and for n > 1, A(n, k) = Sum_{d|n, d>=k} A010051(1+d)*[Sum_{i=0..valuation(n,1+d)} A((n/d)/((1+d)^i), 1+d)].

Original entry on oeis.org

2, 1, 3, 1, 1, 0, 1, 0, 0, 4, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 4, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 1, 0, 5, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2018

Keywords

Comments

This square array gives the values obtained from the recursive PARI-program that M. F. Hasler has provided Oct 05 2009 for A014197, in its two-argument form.

Examples

			Array begins as:
n  | k=1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16, ...
---+------------------------------------------------
1  |   2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2  |   3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
3  |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
4  |   4, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
5  |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
6  |   4, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
7  |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
8  |   5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
9  |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
10 |   2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ...
11 |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
12 |   6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, ...
13 |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
14 |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
15 |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
16 |   6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
		

Crossrefs

Cf. A014197 (column 1).

Programs

  • PARI
    up_to = 120;
    A320000sq(n, k) = if(1==n, if(1==k,2,1), sumdiv(n, d, if(d>=k && isprime(d+1), my(p=d+1, q=n/d); sum(i=0, valuation(n, p), A320000sq(q/(p^i), p))))); \\ After M. F. Hasler's code in A014197
    A320000list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A320000sq(col,(a-(col-1))))); (v); };
    v320000 = A320000list(up_to);
    A320000(n) = v320000[n];

A322310 a(n) = Product_{d|n, d+1 is prime} A008578(1+[Sum_{i=0..A286561(n,1+d)} A320000((n/d)/((1+d)^i), 1+d)]). Here A286561(n,k) gives the k-valuation of n (for k > 1).

Original entry on oeis.org

3, 6, 1, 10, 1, 12, 1, 14, 1, 4, 1, 28, 1, 1, 1, 22, 1, 12, 1, 20, 1, 4, 1, 102, 1, 1, 1, 4, 1, 4, 1, 26, 1, 1, 1, 66, 1, 1, 1, 104, 1, 12, 1, 6, 1, 4, 1, 92, 1, 1, 1, 4, 1, 4, 1, 6, 1, 4, 1, 132, 1, 1, 1, 34, 1, 4, 1, 1, 1, 4, 1, 1240, 1, 1, 1, 1, 1, 4, 1, 57, 1, 4, 1, 21, 1, 1, 1, 28, 1, 1, 1, 6, 1, 1, 1, 492, 1, 1, 1, 12, 1, 4, 1, 6, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2018

Keywords

Crossrefs

Cf. A014197, A320000, A322311 (rgs-transform).
Cf. also A322312.

Programs

  • PARI
    A320000sq(n, k) = if(1==n, if(1==k,2,1), sumdiv(n, d, if(d>=k && isprime(d+1), my(p=d+1, q=n/d); sum(i=0, valuation(n, p), A320000sq(q/(p^i), p))))); \\ From A320000
    A322310(n) = if(1==n,3,my(m=1); fordiv(n,d, my(s, p=d+1, q=n/d); if(isprime(p) && (s = sum(i=0,valuation(n, p), A320000sq(q/(p^i),p))), m *= prime(s))); (m));

Formula

a(n) = Product_{d|n} A008578(1+[Sum_{i=0..A286561(n,1+d)} A320000((n/d)/((1+d)^i), 1+d)])^A010051(1+d).
For all n, A056239(a(n)) = A014197(n).

A035113 Numbers != 2 (mod 4) listed in order of increasing totient function phi (A000010).

Original entry on oeis.org

1, 3, 4, 5, 8, 12, 7, 9, 15, 16, 20, 24, 11, 13, 21, 28, 36, 17, 32, 40, 48, 60, 19, 27, 25, 33, 44, 23, 35, 39, 45, 52, 56, 72, 84, 29, 31, 51, 64, 68, 80, 96, 120, 37, 57, 63, 76, 108, 41, 55, 75, 88, 100, 132, 43, 49, 69, 92, 47, 65, 104, 105, 112, 140, 144
Offset: 1

Views

Author

Keywords

Examples

			phi(1)=1, phi(3)=2, phi(4)=2, phi(5)=4, ...
		

Crossrefs

Programs

  • Python
    from sympy import totient as A000010
    def lov(n): return sorted([[A000010(n), n] for n in range(1,n) if n%4 != 2])
    print([x[1] for x in lov(200)][:100]) # Dumitru Damian, Feb 01 2022

Extensions

More terms from James Sellers
a(43) onward corrected by Sean A. Irvine, Sep 26 2020

A035114 Values of phi(n) corresponding to A035113.

Original entry on oeis.org

1, 2, 2, 4, 4, 4, 6, 6, 8, 8, 8, 8, 10, 12, 12, 12, 12, 16, 16, 16, 16, 16, 18, 18, 20, 20, 20, 22, 24, 24, 24, 24, 24, 24, 24, 28, 30, 32, 32, 32, 32, 32, 32, 36, 36, 36, 36, 36, 40, 40, 40, 40, 40, 40, 42, 42, 44, 44, 46, 48, 48, 48, 48, 48, 48, 48, 48, 48
Offset: 1

Views

Author

Keywords

Examples

			phi(1)=1, phi(3)=2, phi(4)=2, phi(5)=4, ...
		

Crossrefs

Programs

  • Python
    from sympy import totient as A000010
    def lov(n): return sorted([[A000010(n), n] for n in range(1,n) if n%4 != 2])
    print([x[0] for x in lov(200)][:100]) # Dumitru Damian, Feb 03 2022

Formula

a(n) = A000010(A035113(n)). - Michel Marcus, Feb 07 2022

Extensions

More terms from James Sellers
a(43) onward corrected by Sean A. Irvine, Sep 26 2020

A063667 Number of solutions of phi(x) = 12n + 2.

Original entry on oeis.org

3, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Labos Elemer, Aug 22 2001

Keywords

Examples

			In the range n=0..10000, only 18 invphi(12n + 2) sets are nonempty, always with 2 terms. E.g., n = 8034, a(8034) = 2 because 12*8034 + 2 = 96410 and invphi(96410) = {96721,193442}. - Original comment corrected by _Antti Karttunen_, Nov 07 2018
In the range n <= 100000, there are 48 nonzero values. - _Antti Karttunen_, Nov 07 2018
		

Crossrefs

Programs

Formula

a(n) = A014197(A017545(n)). - Antti Karttunen, Nov 07 2018

Extensions

Term a(0) = 3 prepended by Antti Karttunen, Nov 07 2018

A070243 a(n) = Card{ k, phi(k) <= n }.

Original entry on oeis.org

2, 5, 5, 9, 9, 13, 13, 18, 18, 20, 20, 26, 26, 26, 26, 32, 32, 36, 36, 41, 41, 43, 43, 53, 53, 53, 53, 55, 55, 57, 57, 64, 64, 64, 64, 72, 72, 72, 72, 81, 81, 85, 85, 88, 88, 90, 90, 101, 101, 101, 101, 103, 103, 105, 105, 108, 108, 110, 110, 119, 119, 119, 119, 127, 127
Offset: 1

Views

Author

Benoit Cloitre, May 11 2002

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 115-118.
  • Gérald Tenenbaum and Jie Wu, Exercices corrigés de théorie analytique et probabiliste des nombres, Collection SMF, Cours spécialisés, Numero 2, pp. 78-79.

Crossrefs

Partial sums of A014197.

Programs

  • PARI
    for(n=1,150,print1(sum(i=1,100*n,if(sign(eulerphi(i)-n)+1,0,1)+if((eulerphi(i)-n),0,1)),","))
    
  • PARI
    list(nmax) = my(s = 0); for(n = 1, nmax, s += invphiNum(n); print1(s, ", ")); \\ Amiram Eldar, Dec 23 2024, using Max Alekseyev's invphi.gp

Formula

Limit_{n->oo} a(n)/n = zeta(2)*zeta(3)/zeta(6) = 1.943596436820759205057... = A082695.
From Benoit Cloitre, Apr 12 2003: (Start)
a(n) = Sum_{k=1..n} A014197(k).
a(n) = (zeta(2)*zeta(3)/zeta(6))*n + O(n*exp(-c*sqrt(log(n)))) for a suitable constant c > 0. (End)

A071387 Smallest number k for which the set of solutions to phi(x) = k has 2n-1 entries.

Original entry on oeis.org

0, 2, 8, 32, 40, 48, 396, 704, 72, 216, 144, 1056, 360, 384, 1320, 240, 9000, 7128, 480, 1296, 15936, 3072, 864, 7344, 720, 4992, 2016, 6000, 4752, 3024, 9984, 1920, 7560, 22848, 29160, 3360, 13248, 27720, 9072, 9360, 4032, 4800, 16896, 3840, 9504, 23520, 5040
Offset: 1

Views

Author

Labos Elemer, May 23 2002

Keywords

Examples

			For n = 7: 2n-1 = 13, a(7) = Min(InvPhi(13)) = Min({396,400,420,552,560,660}) = 396.
		

Crossrefs

Programs

  • PARI
    a(n) = {if (n==1, return (0)); my(k=1); while(#invphi(k) != 2*n-1, k++); k;} \\ Michel Marcus, May 13 2020

Formula

a(n) = Min({x; Card(InvPhi(x)) = 2n-1}); a(1)=0 because of Carmichael conjecture.

Extensions

a(12)-a(47) from Donovan Johnson, Jul 27 2011

A071388 Numbers k such that the cardinality of the set of solutions to phi(x) = k is a prime.

Original entry on oeis.org

1, 2, 8, 10, 20, 22, 28, 30, 32, 44, 46, 48, 52, 54, 56, 58, 66, 70, 72, 78, 82, 92, 96, 102, 104, 106, 110, 116, 120, 126, 130, 132, 136, 138, 140, 148, 150, 156, 164, 166, 172, 178, 190, 196, 198, 204, 210, 212, 216, 220, 222, 226, 228, 238, 240, 250, 260, 262
Offset: 1

Views

Author

Labos Elemer, May 23 2002

Keywords

Comments

All terms except 1 are even. - Robert Israel, Mar 29 2020

Examples

			InvPhi(48) = {65,104,105,112,130,140,144,156,168,180,210} has 11 terms, so 48 is a term.
		

Crossrefs

Programs

  • Maple
    filter:= n -> isprime(nops(numtheory:-invphi(n))):
    select(filter, [$1..400]); # Robert Israel, Mar 29 2020
  • PARI
    is(k) = isprime(invphiNum(k)); \\ Amiram Eldar, Nov 15 2024, using Max Alekseyev's invphi.gp

A071389 Least number m such that cardinality of InvPhi(m) = prime(n).

Original entry on oeis.org

1, 2, 8, 32, 48, 396, 72, 216, 1056, 1320, 240, 480, 15936, 3072, 7344, 2016, 3024, 9984, 22848, 3360, 13248, 9360, 4800, 9504, 9216, 23328, 7680, 53280, 12480, 29376, 91200, 159744, 22464, 228960, 29952, 179200, 47040, 68544, 15840, 20736, 61440
Offset: 1

Views

Author

Labos Elemer, May 23 2002

Keywords

Examples

			For n = 11: prime(11) = 31, Card(InvPhi(x)) = 31 for {240, 672, ...}; the smallest is 240 = a(11).
		

Crossrefs

Programs

  • PARI
    lista(len) = {my(p = prime(len), v = vector(p, i, -!isprime(i)), c = 0, k = 1, i); while(c < len, i = invphiNum(k); if(i > 0 && i <= p && v[i] == 0, c++; v[i] = k); k++); select(x -> x > 0, v);} \\ Amiram Eldar, Nov 11 2024, using Max Alekseyev's invphi.gp

Formula

a(n) = Min{x; Card(InvPhi(x)) = prime(n), n-th prime}

Extensions

4 more terms from Emeric Deutsch, Jul 25 2005
More terms from Max Alekseyev, Apr 24 2010

A165774 Largest solution to phi(x) = n!, where phi() is Euler totient function (A000010).

Original entry on oeis.org

2, 6, 18, 90, 462, 3150, 22050, 210210, 1891890, 19969950, 219669450, 2847714870, 37020293310, 520843112790, 7959363061650, 135309172048050, 2300255924816850, 41996101027370490, 797925919520039310, 16504589035937252250, 347097774991217099850, 7751850308137181896650, 179602728970220622816750, 4493489228616853106091450, 112337230715421327652286250, 2958213742172761628176871250, 79871771038664563960775523750, 2279417465795734863803670716250
Offset: 1

Views

Author

M. F. Hasler, Oct 04 2009

Keywords

Comments

All solutions to phi(x) = n! belong to the interval [n!,(n+1)!] and are listed in the n-th row of A165773 (when written as table with row lengths A055506). Thus this sequence gives the last element in these rows, i.e., a(n) = A165773(Sum_{k=1..n} A055506(k)).
All terms in this sequence are even, since if x is an odd solution to phi(x) = n!, then 2x is a larger solution because phi(2x) = phi(2)*phi(x) = phi(x).
Most terms (and any term divisible by 4) are divisible by 3, since if x = 2^k*y is a solution with k>1 and gcd(y,2*3) = 1, then x*3/2 = 2^(k-1)*3*y is a larger solution because phi(2^(k-1)*3) = 2^(k-2)*(3-1) = 2^(k-1) = phi(2^k).
For the same reason, most terms are divisible by 5, since if x=2^k*y is a solution with k>2 and gcd(y,2*5) = 1, then x*5/4 is a larger solution.
Also, any term of the form x = 2^k*3^m*y with k,m>1 must be divisible by 7 (else x*7/6 would be a larger solution), and so on.
Experimentally, a(n) = c(n)*(n+1)! with a coefficient c(n) ~ 2^(-n/10) (e.g., c(1) = c(2) = 1, c(10) ~ 0.5).

Examples

			a(1) = 2 is the largest among the A055506(1) = 2 solutions {1,2} to phi(n) = 1! = 1.
a(4) = 90 is the largest among the A055506(4) = 10 solutions {35, 39, 45, 52, 56, 70, 72, 78, 84, 90} to phi(n) = 4! = 24.
See A165773 for more examples.
		

Crossrefs

Programs

Extensions

Edited and terms a(12)-a(28) added by Max Alekseyev, Jan 26 2012, Jul 09 2014
Previous Showing 31-40 of 69 results. Next