cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 67 results. Next

A084545 Alternate number system in base 5.

Original entry on oeis.org

1, 2, 3, 4, 5, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 41, 42, 43, 44, 45, 51, 52, 53, 54, 55, 111, 112, 113, 114, 115, 121, 122, 123, 124, 125, 131, 132, 133, 134, 135, 141, 142, 143, 144, 145, 151, 152, 153, 154, 155, 211, 212, 213, 214, 215, 221, 222
Offset: 1

Views

Author

Robert R. Forslund (forslund(AT)tbaytel.net), Jun 27 2003

Keywords

Examples

			From _Hieronymus Fischer_, Jun 06 2012: (Start)
a(100)  = 345.
a(10^3) = 12445.
a(10^4) = 254445.
a(10^5) = 11144445.
a(10^6) = 223444445.
a(10^7) = 4524444445.
a(10^8) = 145544444445.
a(10^9) = 3521444444445. (End)
		

Crossrefs

Programs

  • PARI
    a(n) = my (w=5); while (n>w, n -= w; w *= 5); my (d=digits(w+n-1, 5)); d[1] = 0; fromdigits(d) + (10^(#d-1)-1)/9 \\ Rémy Sigrist, Dec 04 2019

Formula

From Hieronymus Fischer, Jun 06 and Jun 08 2012: (Start)
The formulas are designed to calculate base-10 numbers only using the digits 1..5.
a(n) = Sum_{j=0..m-1} (1 + b(j) mod 5)*10^j, where m = floor(log_5(4*n+1)), b(j) = floor((4*n+1-5^m)/(4*5^j)).
a(k*(5^n-1)/4) = k*(10^n-1)/9, for k = 1,2,3,4,5.
a((9*5^n-5)/4) = (14*10^n-5)/9 = 10^n + 5*(10^n-1)/9.
a((5^n-1)/4 - 1) = 5*(10^(n-1)-1)/9, n>1.
a(n) <= (10^log_5(4*n+1)-1)/9, equality holds for n=(5^k-1)/4, k>0.
a(n) > (5/10)*(10^log_5(4*n+1)-1)/9, n>0.
lim inf a(n)/10^log_5(4*n) = 1/18, for n --> infinity.
lim sup a(n)/10^log_5(4*n) = 1/9, for n --> infinity.
G.f.: g(x) = (x^(1/4)*(1-x))^(-1) sum_{j>=0} 10^j*z(j)^(5/4)*(1 - 6z(j)^5 + 5z(j)^6)/((1-z(j))(1-z(j)^5)), where z(j) = x^5^j.
Also: g(x) = (1/(1-x)) sum_{j>=0} (1-6(x^5^j)^5+5(x^5^j)^6)*x^5^j*f_j(x)/(1-x^5^j), where f_j(x) = 10^j*x^((5^j-1)/4)/(1-(x^5^j)^5). The f_j obey the recurrence f_0(x) = 1/(1-x^5), f_(j+1)(x) = 10x*f_j(x^5).
Also: g(x) = 1/(1-x))*(h_(5,0)(x) + h_(5,1)(x) + h_(5,2)(x) + h_(4,1)(x) + h_(5,4)(x) - 5*h_(5,5)(x)), where h_(5,k)(x) = sum_{j>=0} 10^j*x^((5^(j+1)-1)/4) * (x^5^j)^k/(1-(x^5^j)^5).
(End)

Extensions

Offset set to 1 according to A007931, A007932 and more terms added by Hieronymus Fischer, Jun 06 2012

A169966 Numbers whose decimal expansion contains only 0's and 3's.

Original entry on oeis.org

0, 3, 30, 33, 300, 303, 330, 333, 3000, 3003, 3030, 3033, 3300, 3303, 3330, 3333, 30000, 30003, 30030, 30033, 30300, 30303, 30330, 30333, 33000, 33003, 33030, 33033, 33300, 33303, 33330, 33333, 300000, 300003, 300030, 300033, 300300, 300303, 300330, 300333
Offset: 1

Views

Author

N. J. A. Sloane, Aug 07 2010

Keywords

Crossrefs

Programs

  • Haskell
    a169966 n = a169966_list !! (n-1)
    a169966_list = map (* 3) a007088_list
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Mathematica
    Map[FromDigits,Tuples[{0,3},6]] (* Paolo Xausa, Oct 30 2023 *)
  • PARI
    print1(0);for(d=1,5,for(n=2^(d-1),2^d-1,print1(", ");forstep(i=d-1,0,-1,print1((n>>i)%2*3)))) \\ Charles R Greathouse IV, Nov 16 2011
    
  • Python
    def a(n): return 3*int(bin(n)[2:])
    print([a(n) for n in range(40)]) # Michael S. Branicky, Mar 30 2021

Formula

a(n+1) = Sum_{k>=0} A030308(n,k)*A093138(k+1). - Philippe Deléham, Oct 16 2011
a(n) = 3 * A007088(n-1).

A179082 Even numbers having an even sum of digits in their decimal representation.

Original entry on oeis.org

0, 2, 4, 6, 8, 20, 22, 24, 26, 28, 40, 42, 44, 46, 48, 60, 62, 64, 66, 68, 80, 82, 84, 86, 88, 110, 112, 114, 116, 118, 130, 132, 134, 136, 138, 150, 152, 154, 156, 158, 170, 172, 174, 176, 178, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 220, 222, 224, 226
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 28 2010

Keywords

Comments

a(n) = A014263(n) for n <= 25;
intersection of A005843 and A054683: A059841(a(n))*(1-A179081(a(n)))=1;
complement of A179083 with respect to A005843;
complement of A179084 with respect to A054683;
a(n) mod 2 = 0 and A007953(a(n)) mod 2 = 0.

Programs

  • Mathematica
    Select[Range[0,250,2],EvenQ[Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Mar 19 2012 *)

A029581 Numbers in which all digits are composite.

Original entry on oeis.org

4, 6, 8, 9, 44, 46, 48, 49, 64, 66, 68, 69, 84, 86, 88, 89, 94, 96, 98, 99, 444, 446, 448, 449, 464, 466, 468, 469, 484, 486, 488, 489, 494, 496, 498, 499, 644, 646, 648, 649, 664, 666, 668, 669, 684, 686, 688, 689, 694, 696, 698, 699, 844, 846, 848
Offset: 1

Views

Author

Keywords

Comments

If n is represented as a zerofree base-4 number (see A084544) according to n=d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n) = Sum_{j=0..m} c(d(j))*10^j, where c(k)=4,6,8,9 for k=1..4. - Hieronymus Fischer, May 30 2012

Examples

			From _Hieronymus Fischer_, May 30 2012: (Start)
a(1000) = 88649.
a(10^4) = 6468989
a(10^5) = 449466489. (End)
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | Set(Intseq(n)) subset [4, 6, 8, 9]]; // Vincenzo Librandi, Dec 17 2018
  • Mathematica
    Table[FromDigits/@Tuples[{4, 6, 8, 9}, n], {n, 3}] // Flatten (* Vincenzo Librandi, Dec 17 2018 *)

Formula

From Hieronymus Fischer, May 30 and Jun 25 2012: (Start)
a(n) = Sum_{j=0..m-1} (2*b(j) mod 8 + 4 + floor(b(j)/4) - floor((b(j)+1)/4))*10^j, where m = floor(log_4(3*n+1)), b(j) = floor((3*n+1-4^m)/(3*4^j)).
Also: a(n) = Sum_{j=0..m-1} (A010877(2*b(j)) + 4 + A002265(b(j)) - A002265(b(j)+1))*10^j.
Special values:
a(1*(4^n-1)/3) = 4*(10^n-1)/9.
a(2*(4^n-1)/3) = 2*(10^n-1)/3.
a(3*(4^n-1)/3) = 8*(10^n-1)/9.
a(4*(4^n-1)/3) = 10^n-1.
a(n) < 4*(10^log_4(3*n+1)-1)/9, equality holds for n=(4^k-1)/3, k > 0.
a(n) < 4*A084544(n), equality holds iff all digits of A084544(n) are 1.
a(n) > 2*A084544(n).
Lower and upper limits:
lim inf a(n)/10^log_4(n) = 1/10*10^log_4(3) = 0.62127870, for n --> inf.
lim sup a(n)/10^log_4(n) = 4/9*10^log_4(3) = 2.756123868970, for n --> inf.
where 10^log_4(n) = n^1.66096404744...
G.f.: g(x) = (x^(1/3)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(4/3)*(1-z(j))*(4 + 6z(j) + 8*z(j)^2 + 9*z(j)^3)/(1-z(j)^4), where z(j) = x^4^j.
Also: g(x) = (1/(1-x))*(4*h_(4,0)(x) + 2*h_(4,1)(x) + 2*h_(4,2)(x) + h_(4,3)(x) - 9*h_(4,4)(x)), where h_(4,k)(x) = Sum_{j>=0} 10^j*x^((4^(j+1)-1)/3)*(x^(k*4^j)/(1-x^4^(j+1)). (End)
Sum_{n>=1} 1/a(n) = 1.039691381254753739202528087006945643166147087095114911673083135126969046250... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 15 2024

Extensions

Offset corrected by Arkadiusz Wesolowski, Oct 03 2011

A062293 Smallest multiple k*n of n which has even digits and is a palindrome or becomes a palindrome when 0's are added on the left (e.g., 10 becomes 010, which is a palindrome).

Original entry on oeis.org

0, 2, 2, 6, 4, 20, 6, 686, 8, 666, 20, 22, 60, 2002, 686, 60, 80, 646, 666, 646, 20, 6006, 22, 828, 600, 200, 2002, 8886888, 868, 464, 60, 868, 800, 66, 646, 6860, 828, 222, 646, 6006, 40, 22222, 6006, 68886, 44, 6660, 828, 282, 4224, 686, 200, 42024, 4004, 424, 8886888, 220, 8008, 68286, 464, 68086, 60
Offset: 0

Views

Author

Amarnath Murthy, Jun 18 2001

Keywords

Comments

Every integer n has a multiple of the form 99...9900...00. To see that n has a multiple that's a palindrome (allowing 0's on the left) with even digits, let 9n divide 99...9900...00; then n divides 22...2200...00. - Dean Hickerson, Jun 29 2001

Examples

			a(7) = 686 as 686 = 98*7 is the smallest palindrome multiple of 7 with even digits.
		

Crossrefs

Cf. A062279. Values of k are given in A061797.

Programs

  • ARIBAS
    stop := 500000; for n := 0 to 60 do k := 1; test := true; while test and k < stop do m := omit_trailzeros(n*k); if test := not all_even(m) or m <> int_reverse(m) then inc(k); end; end; if k < stop then write(n*k," "); else write(-1," "); end; end;
    
  • Haskell
    a062293 0 = 0
    a062293 n = head [x | x <- map (* n) [1..],
                     all (`elem` "02468") $ show x, a136522 (a004151 x) == 1]
    -- Reinhard Zumkeller, Feb 01 2012

Extensions

Corrected and extended by Klaus Brockhaus, Jun 21 2001

A338839 No odd digit is present in a(n) + a(n+1).

Original entry on oeis.org

0, 2, 4, 16, 6, 14, 8, 12, 10, 18, 22, 20, 24, 36, 26, 34, 28, 32, 30, 38, 42, 40, 44, 156, 46, 154, 48, 152, 50, 150, 52, 148, 54, 146, 56, 144, 58, 142, 60, 140, 62, 138, 64, 136, 66, 134, 68, 132, 70, 130, 72, 128, 74, 126, 76, 124, 78, 122, 80, 120, 82, 118, 84, 116, 86, 114, 88, 112, 90, 110, 92
Offset: 1

Views

Author

Eric Angelini and Carole Dubois, Nov 11 2020

Keywords

Comments

This is the lexicographically earliest sequence of distinct nonnegative terms with this property.

Examples

			a(1) + a(2) = 0 + 2 = 2 (no odd digit is present);
a(2) + a(3) = 2 + 4 = 6 (no odd digit is present);
a(3) + a(4) = 4 + 16 = 20 (no odd digit is present); etc.
		

Crossrefs

Cf. A014263 (no odd digit).
Cf. A338840, A338841, A338842, A338843, A338844, A338845, A338846 (variants on the same idea).

Programs

  • Mathematica
    Block[{a = {0}}, Do[Block[{k = 2}, While[Nand[FreeQ[a, k], AllTrue[IntegerDigits@ Total[a[[-1]] + k], EvenQ]], k += 2]; AppendTo[a, k]], {i, 2, 71}]; a] (* Michael De Vlieger, Nov 12 2020 *)

A338841 No odd digit is present in a(n) * a(n+1).

Original entry on oeis.org

0, 1, 2, 3, 8, 5, 4, 6, 7, 12, 17, 24, 10, 20, 11, 22, 13, 16, 14, 19, 32, 9, 52, 39, 58, 36, 18, 26, 31, 28, 15, 40, 21, 42, 53, 54, 46, 44, 47, 60, 34, 59, 38, 69, 94, 30, 68, 33, 62, 43, 48, 50, 56, 73, 88, 23, 96, 25, 80, 35, 64, 41, 104, 27, 84, 51, 122, 71, 66, 37, 72, 29, 76, 79, 112, 74, 63, 102, 61
Offset: 1

Views

Author

Eric Angelini and Carole Dubois, Nov 11 2020

Keywords

Comments

This is the lexicographically earliest sequence of distinct nonnegative terms with this property and also a permutation of the nonnegative integers.

Examples

			a(1) * a(2) = 0 * 1 = 0 (no odd digit is present);
a(2) * a(3) = 1 * 2 = 2 (no odd digit is present);
a(3) * a(4) = 2 * 3 = 6 (no odd digit is present);
a(4) * a(5) = 3 * 8 = 24 (no odd digit is present); etc.
		

Crossrefs

Cf. A014263 (no odd digits).
Cf. A338839, A338840, A338842, A338843, A338844, A338845, A338846 (variants on the same idea).

Programs

  • Mathematica
    Block[{a = {0}}, Do[Block[{k = 1}, While[Nand[FreeQ[a, k], NoneTrue[IntegerDigits@ Total[a[[-1]]*k], OddQ]], k++]; AppendTo[a, k]], {i, 2, 79}]; a] (* Michael De Vlieger, Nov 12 2020 *)

A328849 Numbers in whose primorial base expansion only even digits appear.

Original entry on oeis.org

0, 4, 12, 16, 24, 28, 60, 64, 72, 76, 84, 88, 120, 124, 132, 136, 144, 148, 180, 184, 192, 196, 204, 208, 420, 424, 432, 436, 444, 448, 480, 484, 492, 496, 504, 508, 540, 544, 552, 556, 564, 568, 600, 604, 612, 616, 624, 628, 840, 844, 852, 856, 864, 868, 900, 904, 912, 916, 924, 928, 960, 964, 972, 976, 984, 988, 1020, 1024
Offset: 1

Views

Author

Antti Karttunen, Oct 30 2019

Keywords

Comments

Numbers for which the prime factor form (A276086) of their primorial base expansion is a square, A000290.

Examples

			144 is written as "4400" in primorial base (A049345), because 4*A002110(3) + 4*A002110(2) + 0*A002110(1) + 0*A002110(0) = 4*30 + 4*6 = 144, thus all the digits are even and 144 is included in this sequence.
		

Crossrefs

Cf. A328834, A328850 (squares in this sequence).
Similar sequences: A005823 (ternary), A014263 (decimal), A062880 (quaternary), A351893 (factorial base).

Programs

  • Mathematica
    With[{max = 5}, bases = Prime@ Range[max, 1, -1]; nmax = Times @@ bases - 1; prmBaseDigits[n_] := IntegerDigits[n, MixedRadix[bases]]; Select[Range[0, nmax, 2], AllTrue[prmBaseDigits[#], EvenQ] &]] (* Amiram Eldar, May 23 2023 *)
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    isA328849(n) = issquare(A276086(n));

Formula

a(n) = 2*A328770(n).
A000196(A276086(a(n))) = A276086(a(n)/2) = A328834(n).

A045926 All digits even and nonzero.

Original entry on oeis.org

2, 4, 6, 8, 22, 24, 26, 28, 42, 44, 46, 48, 62, 64, 66, 68, 82, 84, 86, 88, 222, 224, 226, 228, 242, 244, 246, 248, 262, 264, 266, 268, 282, 284, 286, 288, 422, 424, 426, 428, 442, 444, 446, 448, 462, 464, 466, 468, 482, 484, 486, 488, 622, 624, 626, 628, 642
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a045926 n = a045926_list !! (n-1)
    a045926_list = filter (all (`elem` "2468") . show) [2, 4..]
    -- Reinhard Zumkeller, Jan 01 2013
    
  • Python
    def A045926(n):
        m = (3*n+1).bit_length()-1>>1
        return int(''.join((str(((3*n+1-(1<<(m<<1)))//(3<<((m-1-j)<<1))&3)+1) for j in range(m))))<<1 # Chai Wah Wu, Feb 08 2023

Formula

a(n) = 2 * A084544(n). - Reinhard Zumkeller, Jan 01 2013

Extensions

More terms from Patrick De Geest, Jun 15 1999

A085557 Numbers that have more prime digits than nonprime digits.

Original entry on oeis.org

2, 3, 5, 7, 22, 23, 25, 27, 32, 33, 35, 37, 52, 53, 55, 57, 72, 73, 75, 77, 122, 123, 125, 127, 132, 133, 135, 137, 152, 153, 155, 157, 172, 173, 175, 177, 202, 203, 205, 207, 212, 213, 215, 217, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232
Offset: 1

Views

Author

Jason Earls, Jul 04 2003

Keywords

Comments

Begins to differ from A046034 at the 21st term (which is the first 3-digit term).

Examples

			133 is in the sequence as the prime digits are 3 and 3 (those are two digits; counted with multiplicity) and one nonprime digit 1 and so there are more prime digits than nonprime digits. - _David A. Corneth_, Sep 06 2020
		

Crossrefs

Programs

  • PARI
    is(n) = my(d = digits(n), c = 0); for(i = 1, #d, if(isprime(d[i]), c++)); c<<1 > #d \\ David A. Corneth, Sep 06 2020
    
  • Python
    from itertools import count, islice
    def A085557_gen(startvalue=1): # generator of terms
        return filter(lambda n:len(s:=str(n))<(sum(1 for d in s if d in {'2','3','5','7'})<<1),count(max(startvalue,1)))
    A085557_list = list(islice(A085557_gen(),20)) # Chai Wah Wu, Feb 08 2023
Previous Showing 21-30 of 67 results. Next