cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 40 results. Next

A237589 Sum of first n odd noncomposite numbers.

Original entry on oeis.org

1, 4, 9, 16, 27, 40, 57, 76, 99, 128, 159, 196, 237, 280, 327, 380, 439, 500, 567, 638, 711, 790, 873, 962, 1059, 1160, 1263, 1370, 1479, 1592, 1719, 1850, 1987, 2126, 2275, 2426, 2583, 2746, 2913, 3086, 3265, 3446, 3637, 3830, 4027, 4226, 4437, 4660, 4887
Offset: 1

Views

Author

Omar E. Pol, Feb 21 2014

Keywords

Comments

Partial sums of A006005.

Examples

			For n = 5 the first five odd noncomposite numbers are 1, 3, 5, 7, 11, so a(5) = 1 + 3 + 5 + 7 + 11 = 27.
		

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; `if`(n=1, 1, a(n-1) + ithprime(n)) end:
    seq(a(n), n=1..49); # Peter Luschny, Sep 20 2018
  • Mathematica
    a[1]=1; a[n_]:=a[n]=a[n-1]+Prime[n]; Table[a[n], {n,1,49}] (* Robert P. P. McKone, Jan 18 2022 *)
  • PARI
    terms(n) = my(s=1, i=0); forprime(p=3, , if(i >= n, break, print1(s, ", "); i++; s=s+p))
    /* Print initial 50 terms as follows */
    terms(50) \\ Felix Fröhlich, Sep 20 2018

Formula

a(n) = A007504(n) - 1 = A014284(n+1) - 2.

A343809 Divide the positive integers into subsets of lengths given by successive primes, then reverse the order of terms in each subset.

Original entry on oeis.org

2, 1, 5, 4, 3, 10, 9, 8, 7, 6, 17, 16, 15, 14, 13, 12, 11, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59
Offset: 1

Views

Author

Paolo Xausa, Apr 30 2021

Keywords

Comments

From Omar E. Pol, Apr 30 2021: (Start)
Irregular triangle read by rows T(n,k) in which row n lists the next p positive integers in decreasing order, where p is the n-th prime, with n >= 1.
The triangle has the following properties:
Column 1 gives the nonzero terms of A007504.
Column 2 gives A237589.
Column 3 gives A071148.
Column 4 gives the terms > 2 of A343859.
Column 5 gives the absolute values of the terms < -1 of A282329.
Column 6 gives the terms > 7 of A082548.
Column 7 gives the terms > 6 of A115030.
Records are in the column 1.
Indices of records are in the right border.
Right border gives A014284.
Row lengths give A000040.
Row products give A078423.
Row sums give A034956. (End)

Examples

			From _Omar E. Pol_, Apr 30 2021: (Start)
Written as an irregular triangle in which row lengths give A000040 the sequence begins:
   2,  1;
   5,  4,  3;
  10,  9,  8,  7,  6;
  17, 16, 15, 14, 13, 12, 11;
  28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18;
  41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29;
  58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42;
  77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59;
  ...
(End)
		

Crossrefs

Programs

  • Maple
    R:= NULL: t:= 1:
    for i from 1 to 20 do
      p:= ithprime(i);
      R:= R, seq(i,i=t+p-1..t,-1);
      t:= t+p;
    od:
    R; # Robert Israel, Apr 30 2021
  • Mathematica
    With[{nn=10},Reverse/@TakeList[Range[Total[Prime[Range[nn]]]],Prime[Range[nn]]]]//Flatten (* Harvey P. Dale, Apr 27 2022 *)

Formula

T(n,k) = A007504(n) - k + 1, with n >= 1 and 1 <= k <= A000040(n). - Omar E. Pol, May 01 2021

A118482 Partial sums of Chen primes (starting with 1).

Original entry on oeis.org

1, 3, 6, 11, 18, 29, 42, 59, 78, 101, 130, 161, 198, 239, 286, 339, 398, 465, 536, 619, 708, 809, 916, 1025, 1138, 1265, 1396, 1533, 1672, 1821, 1978, 2145, 2324, 2505, 2696, 2893, 3092, 3303, 3530, 3763, 4002, 4253, 4510, 4773, 5042, 5323, 5616, 5923
Offset: 0

Views

Author

Jani Melik, May 05 2006

Keywords

Crossrefs

Programs

  • Maple
    ischenprime:=proc(n); if (isprime(n) = 'true') then if (isprime(n+2) = 'true' or numtheory[bigomega](n+2) = 2) then RETURN('true') else RETURN('false') fi fi end: ts_partsum_chenprime:=proc(n) local i,ans,tren; ans:=1: tren:=1: for i from 1 to n do if (ischenprime(i)='true') then tren := tren+i: ans:=[op(ans), tren]: fi od; RETURN(ans) end: ts_partsum_chenprime(500);
  • Mathematica
    Accumulate[Join[{1},Select[Prime[Range[70]],PrimeOmega[#+2]<3&]]] (* Harvey P. Dale, May 26 2014 *)

A158976 a(n) = sum of numbers k <= n such that not all proper divisors of k are divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 4, 0, 10, 6, 18, 23, 37, 10, 49, 45, 54, 66, 94, 75, 112, 90, 123, 149, 175, 120, 199, 220, 241, 251, 305, 236, 335, 307, 358, 396, 409, 385, 505, 501, 534, 499, 622, 568, 664, 630, 632, 749, 799, 688, 847, 857, 937, 959, 1049, 985, 1078, 1039, 1205
Offset: 1

Views

Author

Jaroslav Krizek, Apr 01 2009

Keywords

Comments

For primes p, a(p) = A000217(p) - A158662(p) = A000217(p) - A014284(A036234(p)).

Examples

			For n = 7 we have the following proper divisors for k <= n: {1}, {1}, {1}, {1, 2}, {1}, {1, 2, 3}, {1}. Only 4 and 6 have proper divisors that are not divisors of 7, viz. 2 and 2, 3. Hence a(7) = 4 + 6 = 10.
		

Crossrefs

Programs

  • Magma
    [ IsEmpty(S) select 0 else &+S where S is [ k: k in [1..n] | exists(t){ d: d in Divisors(k) | d ne k and d notin Divisors(n) } ]: n in [1..57] ];

Extensions

Edited and extended by Klaus Brockhaus, Apr 06 2009

A159073 Sum of the k in the range 1

Original entry on oeis.org

0, 2, 5, 9, 10, 20, 17, 29, 26, 31, 28, 67, 41, 59, 65, 69, 58, 95, 77, 119, 107, 103, 100, 179, 125, 130, 136, 154, 129, 228, 160, 220, 202, 198, 220, 280, 197, 239, 245, 320, 238, 334, 281, 359, 402, 331, 328, 487, 377, 417, 388, 418, 381, 499, 461, 556, 447, 443, 440
Offset: 1

Views

Author

Jaroslav Krizek, Apr 04 2009

Keywords

Comments

Here proper divisors include 1 but not the argument (k or n, respectively) in the divisor set, as defined in A032741.
Terms of the sum are counted in A159070.

Examples

			a(8) = 29 is the sum of the following six k: 2 {1}, 3 {1}, 4 {1, 2}, 5 {1}, 7 {1}, 8 {1, 2, 4} with subsets of the proper divisors {1, 2, 4} of n = 8. 2 + 3 + 4 + 5 + 7 + 8 = 29.
		

Crossrefs

Formula

a(n) = A158975(n) - 1.
If p = prime, element of A000040, a(p) = A158662(p) - 1 = A014284(A036234(p)) - 1.

Extensions

Edited and extended by R. J. Mathar, Apr 06 2009

A179859 Numbers k that divide the sum of the first k noncomposites.

Original entry on oeis.org

1, 3, 7, 225, 487, 735, 50047, 142835, 170209, 249655, 316585343, 374788043, 2460457827, 2803329305, 6860334657, 65397031525, 78658228039
Offset: 1

Views

Author

Ray Chandler, Jul 29 2010

Keywords

Comments

A variant of A045345 (primes), A053781 (composites) and A129749 (nonprimes).

Examples

			The sum of the first 7 noncomposites is 42 = 6*7, so 7 is in the sequence.
		

Crossrefs

Cf. A008578 (noncomposites), A014284 (sum of first n noncomposites).

Programs

  • PARI
    lista(kmax) = {my(m = 1, s = 1); print1(1, ", "); forprime(k = 1, kmax, m++; s += k; if(!(s % m), print1(m, ", ")));} \\ Amiram Eldar, May 24 2024

Formula

Numbers k such that k | A014284(k).
a(n) = A179861(n) / A179860(n).
a(n+1) = A158682(n) + 1.

Extensions

a(16)-a(17) from Amiram Eldar, May 24 2024

A179860 Integer averages of first n noncomposites for some n.

Original entry on oeis.org

1, 2, 6, 636, 1592, 2574, 292656, 917042, 1108972, 1678508, 3334890730, 3981285760, 28567166356, 32739591796, 83332116034, 871263881618, 1055495274756
Offset: 1

Views

Author

Ray Chandler, Jul 29 2010

Keywords

Comments

A variant of A050248 (primes), A073263 (composites) and A160758 (nonprimes).

Examples

			Sum of first 7 noncomposites is 42; 42 / 7 = 6 is in the sequence.
		

Crossrefs

Cf. A008578 (noncomposites), A014284 (sum of first n noncomposites).

Formula

a(n) = A179861(n) / A179859(n) = A014284(A179859(n)) / A179859(n).

Extensions

a(16)-a(17) from Robert Price, Apr 21 2013

A179861 a(n) is the sum of the first A179859(n) noncomposites.

Original entry on oeis.org

1, 6, 42, 143100, 775304, 1891890, 14646554832, 130985694070, 188757015148, 419047914740, 1055777525624570390, 1492138298614167680, 70288308055831268412, 91779857115464381780, 571686203669195590338, 56978071532766214007450, 83023388015844408083484
Offset: 1

Views

Author

Ray Chandler, Jul 29 2010

Keywords

Comments

A variant of A050247 (primes), A073262 (composites) and A164280 (nonprimes).

Examples

			A179859(3) = 7; sum of first 7 noncomposites is 42, so a(3) = 42.
		

Crossrefs

Cf. A008578 (noncomposites), A014284 (sum of first n noncomposites).

Formula

a(n) = A014284(A179859(n)) = A179859(n) * A179860(n).

Extensions

a(16)-a(17) from Amiram Eldar, May 24 2024

A180302 Sequence of primes separated by [sequence of prime] elements. 2, [find 2nd prime after 2 = ] 5, [find 3rd prime after 5 =] 13, [find 5th prime after 13 =] 61, ..., etc.

Original entry on oeis.org

2, 5, 13, 31, 61, 109, 181, 277, 397, 547, 733, 947, 1213, 1499, 1831, 2207, 2633, 3083, 3583, 4133, 4751, 5407, 6073, 6793, 7589, 8513, 9397, 10313, 11353, 12409, 13451, 14713, 15889, 17299, 18593, 20129, 21613, 23167, 24851, 26561, 28387, 30203
Offset: 1

Views

Author

Daniel Tisdale, Aug 24 2010

Keywords

Comments

Similar to A006450.

Crossrefs

Programs

  • Mathematica
    NestList[n = 0; (n++; NextPrime[ #, Prime@ n]) &, 2, 41] (* Robert G. Wilson v, Aug 25 2010 *)
    Prime[Accumulate[Join[{1}, Prime[Range[45]]]]] (* Alonso del Arte, Oct 09 2012 *)

Extensions

a(8) onwards from Robert G. Wilson v, Aug 25 2010

A023538 Convolution of natural numbers with (1, p(1), p(2), ... ), where p(k) is the k-th prime.

Original entry on oeis.org

1, 4, 10, 21, 39, 68, 110, 169, 247, 348, 478, 639, 837, 1076, 1358, 1687, 2069, 2510, 3012, 3581, 4221, 4934, 5726, 6601, 7565, 8626, 9788, 11053, 12425, 13906, 15500, 17221, 19073, 21062, 23190, 25467, 27895, 30480, 33228, 36143, 39231, 42498, 45946, 49585
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{k<=n} [(A158611(k+1)) * (A000027(n-k+1))] = Sum_{k<=n} [(A008578(k)) * (A000027(n-k+1))]. [Jaroslav Krizek, Aug 05 2009; Correction for change of offset in A158611 and A008578 in Aug 2009 Jaroslav Krizek, Jan 27 2010]
Previous Showing 21-30 of 40 results. Next