cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A222883 Decimal expansion of Sierpiński's third constant, K3 = lim_{n->oo} ((1/n) * (Sum_{i=1..n} (A004018(i))^2) - 4* log(n)).

Original entry on oeis.org

8, 0, 6, 6, 4, 8, 6, 1, 8, 2, 9, 3, 3, 6, 3, 2, 4, 6, 1, 0, 5, 1, 1, 8, 7, 4, 3, 8, 8, 6, 0, 4, 6, 1, 7, 0, 5, 8, 0, 0, 7, 3, 6, 7, 1, 0, 0, 9, 4, 5, 8, 9, 9, 2, 2, 4, 4, 3, 6, 7, 7, 1, 3, 3, 7, 9, 1, 2, 5, 7, 3, 6, 6, 4, 6, 4, 7, 3, 1, 1, 4, 9, 0, 2, 1, 6, 5, 4, 0, 5, 5, 9, 3, 2, 2, 4, 7, 2, 1, 6, 7, 8, 1, 5, 1
Offset: 1

Views

Author

Ant King, Mar 11 2013

Keywords

Comments

Sierpiński introduced three constants in his 1908 doctoral thesis. The first, K, is very well known, bears his name and its decimal expansion is given in A062089. However, the second and third of these constants appear to have been largely forgotten. This sequence gives the decimal expansion of the third one, K3, and A222882 gives the decimal expansion of the second one, K2. The formula given below show that K3 is related to several other, naturally occurring constants including K and K2.

Examples

			K3 = 8.066486182933632461051187438860461705800736710094589922443677...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopaedia of Mathematics and its Applications, Cambridge University Press (2003), p.123. Corrigenda in the link below.

Crossrefs

Programs

  • Mathematica
    Take[RealDigits[N[4/3 (24*Log[Gamma[3/4]] - 12*Log[Pi] + 72*Log[Glaisher] - 5*Log[2] + 6*EulerGamma - 3), 100]][[1]], 86]
  • PARI
    4*log(exp(5*Euler-1)/(2^(5/3)/agm(sqrt(2),1)^4))-48/Pi^2*zeta'(2) - 4*Euler \\ Charles R Greathouse IV, Dec 12 2013

Formula

K3 = 8*K / Pi - 48 / Pi^2 * zeta'(2) + 4 * log(2) / 3 - 4, where K is Sierpinski's first constant (A062089).
K3 = 4 / 3 * log(A^72 * e^(6 * eulergamma - 3)*( Gamma(3/4))^24 / (32 * pi^12)), where A is the Glaisher-Kinkelin constant (A074962) and eulergamma is the Euler-Mascheroni constant (A001620).
K3 = 4*log(exp(5*eulergamma - 1) / (2^(5 / 3) * G^4)) - 48 / Pi^2 * zeta'(2) - 4* eulergamma, where G is Gauss’ AGM constant (A014549).
K3 = 4*log(Pi^4 * e^(5*eulergamma - 1) / (2^(5 / 3) * L^4)) - 48 / Pi^2 * zeta'(2) - 4* eulergamma, where L is Gauss’ lemniscate constant (A062539).
K3 = 4*K / Pi + Pi * K2 - 4 * eulergamma, where K2 is Sierpiński's second constant (A222882).
1 / 4 * K3 - 1 / 4 * Pi * K2 - log(pi^2 / (2 * L^2)) = eulergamma.
1 / 4 * K3 - 1 / 4 * Pi * K2 + log(2 * G^2) = eulergamma.

Extensions

More terms from Robert G. Wilson v, Oct 19 2013

A277235 Decimal expansion of 2/(Gamma(3/4))^4.

Original entry on oeis.org

8, 8, 6, 9, 4, 1, 1, 6, 8, 5, 7, 8, 1, 1, 5, 4, 0, 5, 4, 1, 1, 5, 2, 5, 3, 6, 1, 3, 5, 4, 5, 2, 1, 5, 3, 8, 6, 8, 6, 4, 9, 9, 9, 1, 9, 6, 4, 2, 5, 9, 8, 3, 4, 8, 3, 0, 9, 8, 6, 0, 9, 8, 9, 8, 1, 3, 1, 7, 8, 2, 5, 5, 9, 4, 8, 1, 9, 2, 7, 9, 7, 0, 6, 9, 1, 5, 2, 6, 4, 7, 7, 9, 4, 9, 8, 1, 2, 1
Offset: 0

Views

Author

Wolfdieter Lang, Nov 13 2016

Keywords

Comments

This is the value of one of Ramanujan's series: 1 - 5*(1/2)^5 + 9*(1*3/(2*4))^5 -13*(1*3*5/(2*4*6))^5 + - ... . See the Hardy reference p.7. eq. (1.4) and pp. 105-106. For the partial sums see A278140.
The proof of Hardy and Whipple mentioned in the Hardy reference reduces this series to (2/Pi)*Morley's series (for m=1/2). For this series see A277232 and A091670.

Examples

			2/Gamma(3/4)^4 = 0.88694116857811540541152...
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publ., Providence, RI, 2002, pp. 7, 105-106, 111.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); 2/(Gamma(3/4))^4; // G. C. Greubel, Oct 26 2018
  • Mathematica
    RealDigits[2/(Gamma[3/4])^4, 10, 100][[1]] (* G. C. Greubel, Oct 26 2018 *)
  • PARI
    2/gamma(3/4)^4 \\ Michel Marcus, Nov 13 2016
    

Formula

Equals Sum_{k=0..n} (1+4*k)*(binomial(-1/2,k))^5 = Sum_{k=0..n} (-1)^k*(1+4*k)*((2*k-1)!!/(2*k)!!)^5. The double factorials are given in A001147 and A000165 with (-1)!! := 1.
Equals A060294 * A091670.
For (1+4*k)*((2*k-1)!!/(2*k)!!)^5 see A074799(k) / A074800(k).
From Amiram Eldar, Jul 13 2023: (Start)
Equals (Gamma(1/4)/Pi)^4/2.
Equals A088538 * A014549^2.
Equals A263809/Pi. (End)

A309893 Decimal expansion of AGM(1, sqrt(3)/2).

Original entry on oeis.org

9, 3, 1, 8, 0, 8, 3, 9, 1, 6, 2, 2, 4, 4, 8, 2, 7, 1, 1, 7, 7, 8, 4, 4, 5, 1, 5, 5, 1, 2, 1, 3, 5, 2, 9, 7, 5, 7, 8, 7, 6, 6, 4, 2, 8, 4, 1, 3, 4, 2, 6, 8, 6, 1, 1, 1, 0, 2, 2, 0, 6, 1, 3, 4, 8, 9, 1, 6, 2, 8, 9, 7, 2, 8
Offset: 0

Views

Author

Daniel Hoyt, Aug 21 2019

Keywords

Comments

Related to the pendulum acceleration relation at 60 degrees. In general, the period T of a mathematical pendulum with a maximum deflection angle theta is 2*Pi*sqrt(L/g)/AGM(1, cos(theta/2)), where L is the length of the pendulum, g is the gravitational acceleration, and 0 < theta <= 90 degrees. For theta = 60 degrees, the period is T = 2*Pi*sqrt(L/g)/AGM(1, sqrt(3)/2). - Jianing Song, Nov 21 2022

Examples

			0.931808391622448271177844...
		

Crossrefs

Cf. A310000 (AGM(1, cos(Pi/5))), A096427 (AGM(1, sqrt(2)/2)), A053004, A014549, A068521.

Programs

  • Mathematica
    RealDigits[ArithmeticGeometricMean[1, Sqrt[3]/2], 10, 100][[1]] (* Amiram Eldar, Aug 21 2019 *)
  • PARI
    agm(1, sqrt(3)/2) \\ Michel Marcus, Aug 22 2019
    
  • Python
    import decimal
    prec = int(input('Precision: '))
    decimal.getcontext().prec = prec
    D = decimal.Decimal
    def agm(a, b):
        for x in range(prec):
            a, b = (a + b) / 2,(a * b).sqrt()
        return a
    print(agm(1, D(3).sqrt()/2))
    
  • Sage
    RealField(300)(1.0).agm(sqrt(3)/2) # Peter Luschny, Aug 22 2019

Formula

AGM(1, sin(Pi/3)).

A310000 Decimal expansion of AGM(1, phi/2), where phi is the golden ratio (A001622).

Original entry on oeis.org

9, 0, 1, 9, 7, 9, 3, 3, 8, 1, 1, 4, 3, 4, 3, 1, 2, 3, 3, 9, 7, 2, 7, 1, 5, 3, 6, 5, 8, 7, 7, 9, 8, 6, 2, 7, 5, 5, 1, 6, 2, 3, 7, 4, 6, 7, 3, 6, 9, 9, 0, 1, 4, 0, 7, 9, 8, 4, 7, 7, 9, 4, 2, 9, 1, 1, 9, 4, 1, 4, 2, 6, 2, 6, 2, 0, 5, 7, 7, 2, 7, 5, 4, 1, 8
Offset: 0

Views

Author

Daniel Hoyt, Aug 26 2019

Keywords

Comments

Related to the pendulum acceleration relation at 72 degrees. 2*Pi*sqrt(l/g)/AGM(1, phi/2) gives the period T of a mathematical pendulum with a maximum deflection angle of 72 degrees from the downward vertical. The length of the pendulum is l and g is the gravitational acceleration.

Examples

			0.9019793381143431233972715365...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ArithmeticGeometricMean[1, GoldenRatio/2], 10, 100][[1]] (* Amiram Eldar, Aug 26 2019 *)
  • PARI
    agm(1, cos(Pi/5)) \\ Michel Marcus, Apr 05 2020
  • Python
    import decimal
    iters = int(input('Precision: '))
    decimal.getcontext().prec = iters
    D = decimal.Decimal
    def agm(a, b):
        for x in range(iters):
            a, b = (a + b) / 2,(a * b).sqrt()
        return a
    print(agm(1, (D(5).sqrt()+1)/4))
    

Formula

Equals AGM(1, cos(Pi/5)).

A073070 Binary expansion of 1/AGM(1,sqrt(2)).

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Benoit Cloitre, Aug 17 2002

Keywords

Crossrefs

Cf. A014549.

Programs

A230461 Decimal expansion of AGM(sqrt(2), sqrt(3)).

Original entry on oeis.org

1, 5, 6, 9, 1, 0, 5, 8, 0, 2, 8, 6, 9, 3, 2, 2, 3, 2, 6, 9, 8, 5, 1, 9, 5, 4, 5, 6, 0, 7, 8, 2, 5, 6, 1, 6, 7, 3, 1, 3, 9, 4, 5, 2, 0, 0, 0, 9, 0, 1, 7, 3, 7, 9, 6, 3, 1, 6, 8, 4, 6, 1, 9, 0, 3, 4, 2, 3, 2, 1, 6, 2, 8, 3, 2, 1, 4, 8, 9, 5, 8, 5, 2, 4, 1, 4, 4, 9, 8, 0, 5, 5, 7, 9, 0, 6, 3, 9, 0, 3, 4, 1, 0, 7, 6
Offset: 1

Views

Author

Robert G. Wilson v, Oct 19 2013

Keywords

Comments

AGM(a, b) is the limit of the arithmetic-geometric mean iteration applied repeatedly starting with a and b: a_0 = a, b_0 = b, a_{n+1} = (a_n+b_n)/2, b_{n+1} = sqrt(a_n*b_n).

Examples

			1.5691058028693223269851954560782561673139452000901737963168461903...
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, page 5.

Crossrefs

Cf. A002193 (sqrt(2)), A002194 (sqrt(3)).

Programs

  • Maple
    evalf(GaussAGM(sqrt(2),sqrt(3)),120); # Muniru A Asiru, Oct 06 2018
  • Mathematica
    RealDigits[ ArithmeticGeometricMean[ Sqrt[2], Sqrt[3]], 10, 105][[1]]
  • PARI
    agm(sqrt(2), sqrt(3)) \\ Charles R Greathouse IV, Mar 03 2016
Previous Showing 11-16 of 16 results.