cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 51 results. Next

A305416 Negated discriminants of imaginary quadratic number fields whose class group is isomorphic to the Klein 8-group, C_2 x C_2 x C_2.

Original entry on oeis.org

420, 660, 840, 1092, 1155, 1320, 1380, 1428, 1540, 1848, 1995, 3003, 3315
Offset: 1

Views

Author

Vincenzo Librandi, Jun 12 2018

Keywords

Comments

Intersection of A046005 and A003644. Note that A003644 = A014602 union A014603 union A192322 union {a(n)} union {5460}. - Jianing Song, Jul 12 2018

Crossrefs

Subsequence of A046005 and A003644.

Programs

A316743 Discriminants of imaginary fields whose class group has exponent 2, negated.

Original entry on oeis.org

15, 20, 24, 35, 40, 51, 52, 84, 88, 91, 115, 120, 123, 132, 148, 168, 187, 195, 228, 232, 235, 267, 280, 312, 340, 372, 403, 408, 420, 427, 435, 483, 520, 532, 555, 595, 627, 660, 708, 715, 760, 795, 840, 1012, 1092, 1155, 1320, 1380, 1428, 1435, 1540, 1848, 1995, 2280, 3003, 3315, 5460
Offset: 1

Views

Author

Jianing Song, Jul 20 2018

Keywords

Comments

This sequence lists the negated discriminants of imaginary fields whose class group is isomorphic to (C_2)^r, r > 0.
These are the negated fundamental discriminants in A133288.
Also numbers in A003644 but not in A014602. Equals A014603 union A192322 union A305416 union {5460}.

Crossrefs

Cf. Negated discriminants of imaginary fields whose class group is isomorphic to (C_2)^r: A014602 (r=0), A014603 (r=1), A192322 (r=2), A305416 (r=3).
Subsequence of A003644 and A133288.

Programs

  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no > 1 && !#select(k->k<>2, quadclassunit(-n).cyc)} \\ Andrew Howroyd, Jul 20 2018

A351666 Discriminants of imaginary quadratic fields with class number 28 (negated).

Original entry on oeis.org

831, 935, 1095, 1311, 1335, 1364, 1455, 1479, 1496, 1623, 1703, 1711, 1855, 1976, 2024, 2055, 2120, 2127, 2324, 2359, 2431, 2455, 2564, 2607, 2616, 2703, 3224, 3272, 3396, 3419, 3487, 3535, 3572, 3576, 3608, 3624, 3731, 3848, 3995, 4040, 4183, 4279, 4344
Offset: 1

Views

Author

Andy Huchala, Feb 16 2022

Keywords

Comments

Sequence contains 457 terms; largest is 126043.
The class groups associated to 174 of the above discriminants are isomorphic to C_28, and the remaining 283 have a class group isomorphic to C_14 X C_2.

Crossrefs

Programs

  • PARI
    isok(n) = {isfundamental(-n) && quadclassunit(-n).no == 28}; \\ Michel Marcus, Mar 02 2022
  • Sage
    ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
    [-a[0] for a in ls if a[1] == 28]
    

A351679 Discriminants of imaginary quadratic fields with class number 41 (negated).

Original entry on oeis.org

1151, 2551, 2719, 3079, 3319, 3511, 6143, 9319, 9467, 10499, 10903, 11047, 11483, 11719, 11987, 12227, 12611, 13567, 14051, 14411, 14887, 14983, 16067, 16187, 19763, 20407, 20771, 21487, 22651, 24971, 25171, 26891, 26987, 27739, 28547, 29059, 29251, 30859
Offset: 1

Views

Author

Andy Huchala, Mar 28 2022

Keywords

Comments

Sequence contains 109 terms; largest is 296587.
The class group of Q[sqrt(-d)] is isomorphic to C_41 for all d in this sequence.

Crossrefs

Programs

  • Sage
    ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
    [-a[0] for a in ls if a[1] == 41]

A330162 For imaginary fundamental discriminants -d, define b(-d) to be the smallest prime p such that Kronecker(-d,p) = 1. Sequence gives d such that b(-d)^3 > d/4 > b(-d)^2.

Original entry on oeis.org

23, 31, 56, 59, 68, 83, 104, 107, 136, 139, 184, 211, 219, 244, 259, 264, 276, 283, 291, 292, 307, 328, 331, 339, 355, 376, 379, 388, 411, 424, 436, 451, 456, 472, 499, 523, 547, 552, 568, 580, 628, 643, 667, 712, 723, 763, 772, 787, 808, 820, 835, 843, 852, 868, 883
Offset: 1

Views

Author

Jianing Song, Dec 04 2019

Keywords

Comments

It seems that this sequence contains 810 terms, the largest being 1154008. In general, it seems that for any t > 0, b(-d) = o(d^t) as -d -> -oo.
For fundamental discriminants -d, we want to determine the size of b(-d), i.e., the size of the smallest prime that decomposes in Q[sqrt(-d)].
Let K = Q[sqrt(-d)], O_K be the ring of integers over K, so O_K is a Dedekind domain. Let E(-d) be the exponent of the ideal class group of O_K (the exponent of a group G is the smallest e > 0 such that x^e = I for all x in G, where I is the group identity).
If Kronecker(-d,p) = 1, it is well-known that p*O_K is the product of two distinct prime ideals of O_K, say, p*O_K = I*I'. By the property of the ideal class group of Q[sqrt(-d)], I^(k*e) must be principal, e = E(-d). Let t*O_K = I^(k*e), then t/p is not an algebraic integer, and the norm of t is p^e. Define f(x,y) = x^2 + (d/4)*y^2 if -d == 0 (mod 4), x^2 + x*y + ((d+1)/4)*y^2 otherwise, it is easy to see f(x,y) = p^(k*e) has integral solutions (x,y) such that gcd(x,y) = 1.
If f(x,y) = p^(k*e) < d, then |y| = 1, so 4*p^(k*e) - d must be a (positive) square. Setting k = 1 gives b(-d) > (d/4)^(1/e) (and furthermore we have: if Kronecker(-d,p) = 1 and p^(k*e) < d, then k = 1, or (p,k,e,d) = (2,2,1,7), (3,2,1,11)).
If E(-d) = 3, then d is in this sequence.
We also have the following observations (not proved):
(a) if e = 2 (i.e., d is in A003644\A014602 = A316743), then b(-d) < d/4;
(b) if e > 2, then b(-d) < sqrt(d/4) (it can be proved by using deeper algebraic number theory that b(-d) < 2*sqrt(d)/Pi).
If these observations are true, this sequence is also the list of d such that b(-d) > (d/4)^(1/3) and d is not in A003644.
Note that 5460 is conjectured to be the largest term in A003644. Therefore, it seems that b(-d) < sqrt(d/4) for all d > 5460; it seems that b(-d) < (d/4)^(1/3) for all d > 1154008.
Among the known terms:
(1) the term d with the largest E(-d) is d = 998328 with E(-d) = 66.
(2) the term d with the largest b(-d) is d = 656755 with b(-d) = 79.
(3) the largest prime is d = 90787 with E(-d) = 23.

Examples

			The smallest prime p such that Kronecker(-499,p) = 1 is p = 5, and 5^3 > 499/4 > 5^2, so 499 is a term.
		

Crossrefs

Programs

  • PARI
    b(D)=forprime(p=2, oo, if(kronecker(D, p)>0, return(p)))
    isA330162(d) = (d>0) && isfundamental(-d) && b(-d) > sqrtn(d/4,3) && b(-d) < sqrt(d/4)

A351665 Discriminants of imaginary quadratic fields with class number 27 (negated).

Original entry on oeis.org

983, 1231, 1399, 1607, 1759, 1879, 1999, 3271, 3299, 3943, 4903, 6007, 6011, 7699, 8867, 10531, 10939, 11003, 11027, 11383, 11491, 11779, 11939, 13411, 14243, 14723, 15107, 15739, 16411, 16547, 17443, 17627, 17659, 17747, 18587, 18787, 18859, 19051, 19427
Offset: 1

Views

Author

Andy Huchala, Feb 16 2022

Keywords

Comments

Sequence contains 93 terms; largest is 103387.
The class group of Q[sqrt(-d)] is isomorphic to C_9 X C_3 for d = 3299, 19427, 34603, 89923, and 98443. For all other d in this sequence, the class group of Q[sqrt(-d)] is isomorphic to C_27.

Crossrefs

Programs

  • PARI
    isok(n) = {isfundamental(-n) && quadclassunit(-n).no == 27}; \\ Michel Marcus, Mar 02 2022
  • Sage
    ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
    [-a[0] for a in ls if a[1] == 27]
    

A351667 Discriminants of imaginary quadratic fields with class number 29 (negated).

Original entry on oeis.org

887, 2287, 2311, 2383, 2939, 3583, 3659, 3823, 4451, 4519, 5051, 5743, 6947, 7207, 7643, 7687, 8863, 8963, 9323, 12323, 13763, 13883, 14387, 15139, 15227, 15443, 15467, 15859, 16427, 17491, 20483, 20507, 22051, 23059, 23251, 24859, 25523, 28403, 29587, 29723
Offset: 1

Views

Author

Andy Huchala, Mar 24 2022

Keywords

Comments

Sequence contains 83 terms; largest is 166147.
The class group of Q[sqrt(-d)] is isomorphic to C_29 for all d in this sequence.

Crossrefs

Programs

  • Sage
    ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
    [-a[0] for a in ls if a[1] == 29]

A351668 Discriminants of imaginary quadratic fields with class number 30 (negated).

Original entry on oeis.org

671, 815, 1007, 1844, 2036, 2071, 2191, 2264, 2319, 2599, 2708, 3188, 3223, 3284, 3439, 3991, 4087, 4276, 4696, 4835, 4859, 4979, 5579, 5912, 6107, 6459, 6463, 6488, 6535, 6635, 7087, 7115, 7303, 7576, 7835, 7971, 8259, 8267, 8367, 8483, 8948, 9019, 9076
Offset: 1

Views

Author

Andy Huchala, Mar 24 2022

Keywords

Comments

Sequence contains 255 terms; largest is 134467.
The class group of Q[sqrt(-d)] is isomorphic to C_30 for all d in this sequence.

Crossrefs

Programs

  • Sage
    ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
    [-a[0] for a in ls if a[1] == 30]

A351669 Discriminants of imaginary quadratic fields with class number 31 (negated).

Original entry on oeis.org

719, 911, 2927, 3251, 3727, 3779, 4159, 4951, 5651, 6131, 6491, 7639, 8647, 9203, 10427, 11863, 12347, 12923, 13043, 13219, 13687, 14627, 14731, 15923, 17987, 18803, 19219, 20611, 24691, 24979, 28051, 32083, 32363, 35491, 38851, 39667, 39883, 41227, 41539
Offset: 1

Views

Author

Andy Huchala, Mar 24 2022

Keywords

Comments

Sequence contains 73 terms; largest is 133387.
The class group of Q[sqrt(-d)] is isomorphic to C_31 for all d in this sequence.

Crossrefs

Programs

  • Sage
    ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
    [-a[0] for a in ls if a[1] == 31]

A351670 Discriminants of imaginary quadratic fields with class number 32 (negated).

Original entry on oeis.org

791, 1119, 1239, 1463, 1551, 1767, 1784, 1943, 2084, 2180, 2276, 2343, 2840, 2847, 2996, 3080, 3156, 3199, 3207, 3236, 3247, 3295, 3428, 3476, 3679, 3812, 3895, 4088, 4296, 4340, 4495, 4584, 4647, 4767, 4868, 4884, 4964, 4980, 4996, 5012, 5064, 5192, 5215
Offset: 1

Views

Author

Andy Huchala, Mar 24 2022

Keywords

Comments

Sequence contains 708 terms; largest is 164803.
The class groups associated to 187 of the above discriminants are isomorphic to C_32, 273 have a class group isomorphic to C_16 X C_2, 160 isomorphic to C_8 X C_2 X C_2, 60 have a class group isomorphic to C_8 X C_4, 15 have a class group isomorphic to C_4 X C_2 X C_2 X C_2, and the remaining 13 have a class group isomorphic to C_4 X C_4 X C_2.

Crossrefs

Programs

  • Sage
    ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
    [-a[0] for a in ls if a[1] == 32]
Previous Showing 31-40 of 51 results. Next