cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 63 results. Next

A262206 Product of prime(n) consecutive numbers starting from n.

Original entry on oeis.org

2, 24, 2520, 604800, 54486432000, 53353114214400, 35905578804006912000, 80018147048929689600000, 203939450748460387344384000000, 1441310123089178548721360295690240000000, 9218619547278385997621820451234775040000000
Offset: 1

Views

Author

Altug Alkan, Sep 15 2015

Keywords

Comments

a(n) is always divisible by A039716(n).

Examples

			For n=1, a(1) = 1*2 = 2.
For n=2, a(2) = 2*3*4 = 24.
For n=3, a(3) = 3*4*5*6*7 = 2520.
For n=4, a(4) = 4*5*6*7*8*9*10 = 604800.
		

Crossrefs

Cf. A075069: product of prime(n) consecutive numbers starting from prime(n).

Programs

Formula

a(n) = (prime(n) + n - 1)! / (n-1)!.

A267421 Primes of the form prime(n) + n + n^2.

Original entry on oeis.org

17, 41, 73, 113, 139, 163, 193, 223, 491, 859, 919, 1187, 1259, 1409, 1483, 1901, 1987, 2083, 2267, 2467, 2677, 3221, 4339, 4603, 5923, 6079, 7573, 8839, 9421, 9619, 10223, 11489, 11701, 12143, 12589, 13499, 13729, 14449, 15679, 16183, 16703, 17231, 17497, 19121
Offset: 1

Views

Author

Emre APARI, Jan 14 2016

Keywords

Examples

			The ninth prime is 23, and 23 + 9 + 9^2 = 113, which is prime, so 113 is in the sequence.
		

Crossrefs

Programs

  • Maple
    p:= 0: Res:= NULL:
    for n from 1 to 1000 do
      p:= nextprime(p);
      if isprime(p+n+n^2) then Res:= Res, p+n+n^2 fi
    od:
    Res; # Robert Israel, Jan 08 2017
  • Mathematica
    Select[Table[Prime[n] + n + n^2, {n, 100}], PrimeQ] (* Alonso del Arte, Feb 22 2016 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (isprime(p=prime(n)+n+n^2), print1(p, ", ")););} \\ Michel Marcus, Mar 13 2016

Extensions

More terms from Michel Marcus, Mar 13 2016

A066197 Squarefree kernel of (n*prime(n))*(n+prime(n)).

Original entry on oeis.org

6, 30, 30, 154, 110, 1482, 714, 114, 138, 11310, 14322, 1554, 3198, 34314, 43710, 7314, 38114, 28914, 109478, 64610, 144102, 175538, 202354, 60342, 59170, 333502, 40170, 22470, 436218, 484770, 622046, 42706, 768570, 817598, 239890, 169422
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 15 2001

Keywords

Examples

			For n=20 we have: A = n = 20, B = A000040(20) = 71, C = A + B = 20 + 71 = 91 and A*B*C = 129220 with squarefree kernel a(20) = 64610 = 2*5*7*13*71.
		

Programs

  • Haskell
    a066197 n = a007947 $ a033286 n * a014688 n
    -- Reinhard Zumkeller, Jul 24 2013
  • Mathematica
    sfk[n_] := Times @@ FactorInteger[n][[All, 1]];
    a[n_] := sfk[n Prime[n] (n+Prime[n])];
    Array[a, 40] (* Jean-François Alcover, Feb 04 2019 *)
  • PARI
    a(n)=my(p=prime(n),f=vecsort(concat(concat(p, factor(n)[,1]), factor(n+p)[,1]),,8)~); prod(i=1,#f,f[i]) \\ Charles R Greathouse IV, Jul 23 2013
    

Formula

a(n) = A007947(A033286(n) * A014688(n)).

A104860 Prime next to (n + n-th prime).

Original entry on oeis.org

5, 7, 11, 13, 17, 23, 29, 29, 37, 41, 43, 53, 59, 59, 67, 71, 79, 83, 89, 97, 97, 103, 107, 127, 127, 131, 131, 137, 139, 149, 163, 167, 173, 179, 191, 191, 197, 211, 211, 223, 223, 227, 239, 239, 251, 251, 263, 277, 277, 281
Offset: 1

Views

Author

Zak Seidov, Apr 24 2005

Keywords

Crossrefs

Cf. A014688.

Programs

  • Mathematica
    Table[NextPrime[n+Prime[n]],{n,60}] (* Harvey P. Dale, Aug 16 2018 *)
  • PARI
    a(n) = nextprime(n + prime(n) + 1); \\ Michel Marcus, Oct 09 2013

Formula

a(n) = nextprime(A014688(n)).

A116023 The n-th prime plus n gives a semiprime (A001358).

Original entry on oeis.org

10, 12, 14, 15, 16, 19, 20, 21, 23, 25, 30, 31, 36, 37, 38, 39, 40, 44, 52, 54, 56, 57, 58, 60, 62, 67, 74, 75, 77, 80, 83, 84, 86, 88, 90, 99, 107, 111, 115, 120, 124, 136, 140, 145, 146, 154, 156, 160, 162, 164, 165, 166, 168, 174, 175, 182, 189, 192, 195, 196
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Examples

			p(30)+30=143=11*13.
		

Crossrefs

A167136 a(n) = b(n)-th highest positive integer not equal to any a(k), 1 <= k <= n-1, where b(n) = noncomposite numbers = A008578(n).

Original entry on oeis.org

1, 3, 5, 8, 11, 16, 19, 24, 27, 32, 39, 42, 49, 54, 57, 62, 69, 76, 79, 86, 91, 94, 101, 106, 113, 122, 127, 130, 135, 138, 143, 158, 163, 170, 173, 184, 187, 194, 201, 206, 213, 220, 223, 234, 237, 242, 245, 258, 271, 276, 279, 284, 291, 294, 305, 312, 319, 326
Offset: 1

Views

Author

Jaroslav Krizek, Oct 28 2009

Keywords

Comments

a(1) = 1, a(n) = A014688(n-1) = (n-1)-th prime + n - 1 for n >= 2. a(n) = A090178(n) - 1 = n-th noncomposite number + n - 1 for n >= 2.

Examples

			A008578(4) = 5, so a(4) = 8 = 5th highest positive integer not equal to 1, 3, or 5 (the values of a(k), 1 <= k <= 3).
		

Formula

a(1) = 1, a(n) = a(n-1) + A008578(n+1) - A008578(n) + 1 for n >= 2. a(1) = 1, a(2) = 3, a(n) = a(n-1) + A001223(n) + 1 for n >= 3. a(1) = 1, a(n) = n - 1 + A000040(n-1) = n - 1 + A008578(n) = n - 1 + A158611(n+1) for n >= 2.

A230846 1 + A075526(n).

Original entry on oeis.org

2, 2, 3, 3, 5, 3, 5, 3, 5, 7, 3, 7, 5, 3, 5, 7, 7, 3, 7, 5, 3, 7, 5, 7, 9, 5, 3, 5, 3, 5, 15, 5, 7, 3, 11, 3, 7, 7, 5, 7, 7, 3, 11, 3, 5, 3, 13, 13, 5, 3, 5, 7, 3, 11, 7, 7, 7, 3, 7, 5, 3, 11, 15, 5, 3, 5, 15, 7, 11, 3, 5, 7, 9, 7, 7, 5, 7, 9, 5, 9, 11, 3, 11, 3, 7, 5, 7, 9, 5, 3, 5, 13, 9, 5, 9, 5, 7
Offset: 1

Views

Author

Omar E. Pol, Nov 01 2013

Keywords

Comments

Partial sums give A095116.

Examples

			On the first quadrant of the square grid consider a diagram in which the n-th horizontal bar contains A006093(n) cells and in which the number of cells in the vertical bars gives A000720 as shown below. a(n) is the sum of the length of the n-th horizontal boundary segment and the length of the n-th vertical boundary segment between the structure formed by the horizontal bars and the structure formed by the vertical bars, hence a(n) = A075526(n) + 1. The total length of the boundary segments from [0, 0] after n-th stage is A095116(n).
.    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
30  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
28  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
22  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | |
18  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | |
16  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | |
12  |_ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | |
10  |_ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | | | |
6   |_ _ _ _ _ _| | | | | | | | | | | | | | | | | | | | | | | | |
4   |_ _ _ _| | | | | | | | | | | | | | | | | | | | | | | | | | |
2   |_ _| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
1   |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
.    0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 9 10 10
.
		

Crossrefs

Essentially the same as A076368.

A254867 Numbers n such that prime(n) + n and prime(n) + n^2 are prime.

Original entry on oeis.org

1, 2, 4, 22, 66, 96, 106, 144, 180, 222, 324, 378, 466, 492, 604, 742, 760, 778, 784, 960, 984, 990, 994, 1050, 1150, 1162, 1186, 1248, 1302, 1308, 1356, 1360, 1380, 1744, 1830, 1866, 1870, 1956, 2052, 2070, 2112, 2182, 2212, 2380, 2470, 2556, 2586, 2638, 2676, 2760, 2766
Offset: 1

Views

Author

Zak Seidov, Feb 09 2015

Keywords

Examples

			a(4) = 22 = A064402(6): prime(22) = 79, 79 + {22, 22^2} = {101, 563} both prime.
		

Crossrefs

Subsequence of A064402. Cf. A000040, A014688, A061067, A061068.

Programs

  • Maple
    A254867:=n->`if`(isprime(ithprime(n)+n) and isprime(ithprime(n)+n^2), n, NULL): seq(A254867(n), n=1..10^4); # Wesley Ivan Hurt, Jan 16 2017
  • Mathematica
    Select[Range[1000], PrimeQ[Prime[#] + #] && PrimeQ[Prime[#] + #^2] &] (* Alonso del Arte, Feb 09 2015 *)
    Select[Range[3000],AllTrue[Prime[#]+{#,#^2},PrimeQ]&] (* Harvey P. Dale, Jan 17 2023 *)

A259408 a(1) = 1 thereafter a(n) = Sum_{m=1..n-1} prime(a(m)).

Original entry on oeis.org

1, 2, 5, 16, 69, 416, 3277, 33590, 430131, 6700328, 124069971, 2680915918, 66579269891, 1876496610172, 59387269231505, 2091422223924852, 81321166136299741, 3467614972592015460
Offset: 1

Views

Author

Anders Hellström, Jun 26 2015

Keywords

Crossrefs

Cf. A074271.

Programs

  • Mathematica
    a = {1}; Do[AppendTo[a, Sum[Prime[a[[m]]], {m, n - 1}]], {n, 2, 15}];
    a (* Michael De Vlieger, Aug 06 2015 *)
  • PARI
    a(n) = if (n==1, 1, sum(k=1, n-1, prime(a(k)))); \\ Michel Marcus, Jun 26 2015
    
  • PARI
    first(m)=my(v=vector(m)); v[1]=1; print1(1); for(i=2, m, v[i]=sum(k=1, i-1, prime(v[k])); print1(", ", v[i])); v; \\ Anders Hellström, Aug 01 2015
    
  • PARI
    first(n)=my(v=vector(n,i,i)); for(i=3,n,v[i]=v[i-1]+prime(v[i-1])); v \\ Charles R Greathouse IV, Aug 06 2015
    
  • Perl
    use bignum;
    use Math::Prime::Util ':all';
    print "1\n2\n";
    my $a = 2;
    while(1){
      $a += nth_prime($a);
      print "$a\n";
    } # Charles R Greathouse IV, Aug 06 2015
    
  • Python
    from sympy import prime
    from functools import lru_cache
    @lru_cache()
    def a(n): return n if n < 3 else a(n-1) + prime(a(n-1))
    print([a(n) for n in range(1, 14)]) # Michael S. Branicky, Oct 07 2022

Formula

a(n) = A014688(a(n-1)) for n>2, a(1)=1, a(2)=2.

Extensions

a(15) from Michael De Vlieger, Jul 01 2015
a(16)-a(18) from Charles R Greathouse IV, Aug 06 2015

A272245 Cubes of the form prime(n)+n.

Original entry on oeis.org

8, 27, 1000, 2744, 4096, 46656, 68921, 274625, 941192, 1295029, 1481544, 1906624, 14886936, 34328125, 35937000, 45882712, 50243409, 63521199, 64000000, 67917312, 76225024, 95443993, 112678587, 142236648, 143877824, 174676879, 198155287, 203297472, 216000000
Offset: 1

Views

Author

Emre APARI, Apr 23 2016

Keywords

Comments

The cube root of the first 10 terms are: 2,3,10,14,16,36,41,65,98,109.

Examples

			prime(147) + 147 = 853 + 147 = 1000; which is 10^3.
		

Crossrefs

Programs

  • PARI
    lista(nn) = {for (n=1, nn, if (ispower(p=n+prime(n), 3), print1(p, ", ")););} \\ Michel Marcus, Apr 23 2016

Formula

a(n) = A014688(A076147(n)). - Michel Marcus, Apr 23 2016

Extensions

a(20)-a(29) from Giovanni Resta, Apr 23 2016
Previous Showing 41-50 of 63 results. Next