A064617
a(n) = (10^n - 1)*(80/81) + n/9.
Original entry on oeis.org
9, 98, 987, 9876, 98765, 987654, 9876543, 98765432, 987654321, 9876543210, 98765432099, 987654320988, 9876543209877, 98765432098766, 987654320987655, 9876543209876544, 98765432098765433, 987654320987654322, 9876543209876543211, 98765432098765432100, 987654320987654320989
Offset: 1
Curious multiplications:
1*8 + 1 = 9;
12*8 + 2 = 98;
123*8 + 3 = 987;
1234*8 + 4 = 9876;
12345*8 + 5 = 98765;
123456*8 + 6 = 987654;
1234567*8 + 7 = 9876543;
12345678*8 + 8 = 98765432;
123456789*8 + 9 = 987654321.
- _Vincenzo Librandi_, Aug 07 2010 and _Philippe Deléham_, Mar 09 2014
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 29.
-
A064617:=n->(10^n-1)*(80/81)+n/9; seq(A064617(n), 1..20); # Wesley Ivan Hurt, Mar 10 2014
-
Table[(10^n - 1)*(80/81) + n/9, {n, 20}] (* Wesley Ivan Hurt, Mar 10 2014 *)
LinearRecurrence[{12,-21,10},{9,98,987},30] (* Harvey P. Dale, Aug 20 2023 *)
-
{ a=0; for (n=1, 150, a=10*a + 10 - n; write("b064617.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 20 2009
-
Vec(x*(10*x-9)/((x-1)^2*(10*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2014
A099669
Partial sums of repdigits of A002276.
Original entry on oeis.org
2, 24, 246, 2468, 24690, 246912, 2469134, 24691356, 246913578, 2469135800, 24691358022, 246913580244, 2469135802466, 24691358024688, 246913580246910, 2469135802469132, 24691358024691354, 246913580246913576, 2469135802469135798, 24691358024691358020, 246913580246913580242
Offset: 1
2 + 22 + 222 + 2222 = a(4) = 2468.
-
A099669:=n->(2/81)*(10^(n+1) - 9*n - 10): seq(A099669(n), n=1..30); # Wesley Ivan Hurt, Apr 18 2017
-
<Robert G. Wilson v, Nov 20 2004 *)
LinearRecurrence[{12,-21,10},{2,24,246},30] (* Harvey P. Dale, Jun 01 2025 *)
A099675
Partial sums of repdigits of A002282.
Original entry on oeis.org
8, 96, 984, 9872, 98760, 987648, 9876536, 98765424, 987654312, 9876543200, 98765432088, 987654320976, 9876543209864, 98765432098752, 987654320987640, 9876543209876528, 98765432098765416, 987654320987654304, 9876543209876543192, 98765432098765432080, 987654320987654320968
Offset: 1
8 + 88 + 888 + 8888 + 88888 = a(5) = 98760.
A287353
a(0)=0; for n>0, a(n) = 10*a(n-1) + prime(n).
Original entry on oeis.org
0, 2, 23, 235, 2357, 23581, 235823, 2358247, 23582489, 235824913, 2358249159, 23582491621, 235824916247, 2358249162511, 23582491625153, 235824916251577, 2358249162515823, 23582491625158289
Offset: 0
-
FoldList[10 #1 + Prime@ #2 &, 0, Range@ 17] (* Michael De Vlieger, May 24 2017 *)
-
a(n) = fromdigits(primes(n)); \\ Kevin Ryde, Jun 22 2022
-
from sympy import prime
l = [0]
for i in range(20):
l += [10 * l[i] + prime(i + 1)]
print(l) # Indranil Ghosh, May 25 2017
A030512
Concatenation of first n 2-digit positive integers including leading zeros.
Original entry on oeis.org
1, 102, 10203, 1020304, 102030405, 10203040506, 1020304050607, 102030405060708, 10203040506070809, 1020304050607080910, 102030405060708091011, 10203040506070809101112, 1020304050607080910111213, 102030405060708091011121314
Offset: 1
From _Peter Bala_, Sep 14 2015: (Start)
Decimal expansions with repeating strings of digits in parentheses for clarity:
sqrt(a(50)) = 1.(0101...0101)0075(5050...5050)4728503 (7878...7878)7065734690(6565...6565)63090366531526199 (4949...4949)40423435587935014204(5454...5454) 511096186531728108723958(33...33)197004273464583079020182291 (66...66)107291492892700779438018798828124(99...99) 7645962810367893557912773556179470486(11...11) 010064064746152... * 10^49.
1/sqrt(a(10)) = 9.9(0...0)53955(0...0)441082125(0..0)4... * 10^(-10). The long strings of zeros gradually shorten in length until they disappear and are interspersed with five blocks of digits [99, 53955, 441082125, 400649596875, 38211955301953125] = [3^2*11, 3^2*5*11*109, 3^3*5^3*11*109^2, 3^2*5^5*11*109^3, 3^2*5^8*7*11*109^4].
(End)
-
[-(199/9801)-(1/99)*n+(10000/9801)*100^n: n in [0..98]]; // Vincenzo Librandi, May 17 2013
-
Table[-(199/9801)-(1/99) n + (10000/9801) 100^n, {n, 0, 98}] (* Vincenzo Librandi, May 17 2013 *)
-
a(n) = -(199/9801) - (1/99)*(n-1) + (10000/9801)*100^(n-1);
vector(20, n, a(n)) \\ Altug Alkan, Oct 01 2015
A099674
Partial sums of repdigits of A002281.
Original entry on oeis.org
0, 7, 84, 861, 8638, 86415, 864192, 8641969, 86419746, 864197523, 8641975300, 86419753077, 864197530854, 8641975308631, 86419753086408, 864197530864185, 8641975308641962, 86419753086419739, 864197530864197516, 8641975308641975293, 86419753086419753070, 864197530864197530847
Offset: 0
7 + 77 + 777 + 7777 + 77777 = a(5) = 86415.
-
<Robert G. Wilson v, Nov 20 2004 *)
Accumulate[LinearRecurrence[{11,-10},{0,7},25]] (* Harvey P. Dale, Jul 22 2025 *)
A262183
a(0) = 0, a(n) = 10*a(n-1) + n*(n+1)*(n+2)/6.
Original entry on oeis.org
0, 1, 14, 150, 1520, 15235, 152406, 1524144, 15241560, 152415765, 1524157870, 15241578986, 152415790224, 1524157902695, 15241579027510, 152415790275780, 1524157902758616, 15241579027587129, 152415790275872430, 1524157902758725630, 15241579027587257840
Offset: 0
(1) The decimal expansion of a(61)^(1/4) (with the blocks of 'random' digits enclosed in parentheses to aid readability) begins
1.111...111(026286308)333...333(2361974965884332291)666...666(4936365745813146737399105902)777...777(414516002742700195101894168058610026041)666...666(5834699239217156417791785081497321498627522786458)333..333(1... * 10^15.
The repeating digits are 1, 3, 6, 7, 6 and 3, an initial subsequence of A060011.
(2) The decimal expansion of 1/a(61)^(1/4) (with now the strings of 0's enclosed in parentheses) begins
9.(000..000)6870809025(000...000)131133379605615140625(000...000)300330802691003816294298046875(000...000)74515840736091563874877683318366943359375(000...000)193416219724333545001418899430083738351541748046875(000...000)5... * 10^(-16)
The long strings of 0's gradually shorten in length until they disappear and are interlaced with 5 strings of digits [6870809025, 131133379605615140625, 300330802691003816294298046875, 74515840736091563874877683318366943359375, 193416219724333545001418899430083738351541748046875]. Reading these strings as ordinary integers and factorizing we obtain [ (3^2)*(5^2)*30536929, (3^2)*(5^6)*(30536929)^2, (3^3)*(5^8)*(30536929)^3, (3^3)*(5^12)*13*(30536929)^4, (3^3)*(5^13)*13*17*(30536929)^3 ] showing how the numbers are related.
(3) The decimal expansion of 1/a(61)^(2/4) begins
8.1(000...000)12367456245(000...000)28324809994812870375(000...000)7207939264584091591063153125(000...000)192594788364052042015068473807471484375(000...000)52931280402387750233872466233174047490955859375(000...000)1... * 10^(-31).
The long strings of 0's gradually shorten in length and are interlaced with 5 strings of digits
[12367456245, 28324809994812870375, 7207939264584091591063153125, 192594788364052042015068473807471484375, 52931280402387750233872466233174047490955859375].
Reading these strings as ordinary integers and factorizing we obtain [ (3^4)*5*30536929, (3^5)*(5^3)*(30536929)^2, (3^4)*(5^5)*(30536929)^3, (3^4)*(5^8)*7*(30536929)^4, (3^6)*(5^8)*7*(30536929)^3 ].
(4) The decimal expansion of 1/a(61)^(3/4) begins
7.29(000...000)1669606593075(000...000)44611575741830270840625(000...000)124877547758919386815169127890625(000...000)35750407590077160299047085450511894287109375(000...000)1... * 10^(-46).
The long strings of 0's gradually shorten in length and are interlaced with 4 strings of digits [1669606593075, 44611575741830270840625, 124877547758919386815169127890625, 35750407590077160299047085450511894287109375]. Reading these strings as ordinary integers and factorizing we obtain [ (3^7)*(5^2)*30536929, (3^7)*(5^5)*7*(30536929)^2, (3^6)*(5^7)*7*11*(30536929)^3, (3^7)*(5^12)*7*11*(30536929)^4 ].
(5) The decimal expansion of 1/a(61) begins
6.561(000...000)200352791169(000...000)6118158958879580001(000...000)186829785738019654040356929(000...000)5705207902167118776034942675531041(000...000)174219528638716252198345946001761436313089(000...000)5320129376453944844526984070493622855630820563681(000...000)1... * 10^(-61).
The long strings of 0's gradually shorten in length and are interlaced with 6 strings of digits [200352791169, 6118158958879580001, 186829785738019654040356929, 5705207902167118776034942675531041, 174219528638716252198345946001761436313089, 5320129376453944844526984070493622855630820563681]. Reading these strings as ordinary integers and factorizing we obtain [ (3^8)*30536929, (3^8)*(30536929)^2, (3^8)*(30536929)^3, (3^8)*(30536929)^4, (3^8)*(30536929)^5, (3^8)*(30536929)^6 ].
-
[0] cat [n eq 1 select 1 else 10*Self(n-1) + n*(n+1)*(n+2)/6: n in [1..30]]; // Vincenzo Librandi, Sep 20 2015
-
#A262183
seq((1/13122)*(2*10^(n+3)-243*n^3-1539*n^2-3096*n-2000), n = 0..22);
-
Table[(1/9^4) 10^(n + 3) - (243 n^3 + 1539 n^2 + 3096 n + 2000)/13122, {n, 0, 30}] (* Vincenzo Librandi, Sep 20 2015 *)
nxt[{n_,a_}]:={n+1,10a+((n+1)(n+2)(n+3))/6}; NestList[nxt,{0,0},20][[All,2]] (* or *) LinearRecurrence[ {14,-46,64,-41,10},{0,1,14,150,1520},30] (* Harvey P. Dale, Feb 29 2020 *)
-
concat(0, Vec(-x/((x-1)^4*(10*x-1)) + O(x^40))) \\ Colin Barker, Sep 20 2015
A346535
Numbers obtained by adding the first k repdigits that consist of the same digit, for some number k.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 24, 36, 48, 60, 72, 84, 96, 108, 123, 246, 369, 492, 615, 738, 861, 984, 1107, 1234, 2468, 3702, 4936, 6170, 7404, 8638, 9872, 11106, 12345, 24690, 37035, 49380, 61725, 74070, 86415, 98760, 111105, 123456, 246912, 370368, 493824
Offset: 1
a(1) = 1,
a(2) = 2,
a(3) = 3,
...
a(9) = 9;
a(10) = 1 + 11 = 12,
a(11) = 2 + 22 = 24,
a(12) = 3 + 33 = 36,
...
a(18) = 9 + 99 = 108;
a(19) = 1 + 11 + 111 = 123,
a(20) = 2 + 22 + 222 = 246,
a(21) = 3 + 33 + 333 = 369,
...
a(27) = 9 + 99 + 999 = 1107; ...
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,-21,0,0,0,0,0,0,0,0,10).
-
Table[m*(10^(1+k)-10-9*k)/81,{k,6},{m,9}]//Flatten (* Stefano Spezia, Aug 17 2021 *)
-
def sumRepUnits(n): # A014824
return ((10**n-1)*10 - 9*n)//81
def a(n): # A346535
d = 1 + (n-1)%9
m = 1 + (n-1)//9
return d*sumRepUnits(m)
for n in range(1,1000):
print(n, a(n))
A032343
a(n) = 10*a(n-1)+n^2, a(0)=0.
Original entry on oeis.org
0, 1, 14, 149, 1506, 15085, 150886, 1508909, 15089154, 150891621, 1508916310, 15089163221, 150891632354, 1508916323709, 15089163237286, 150891632373085, 1508916323731106, 15089163237311349, 150891632373113814
Offset: 0
-
[0] cat [n le 1 select n else 10*Self(n-1)+n^2: n in [1..20]]; // Vincenzo Librandi, Mar 10 2013
-
CoefficientList[Series[(x^2+x)/((x-1)^3 (10x-1)),{x,0,30}],x] (* Harvey P. Dale, Mar 20 2011 *)
RecurrenceTable[{a[0] == 0, a[n] == 10*a[n-1] + n^2}, a, {n, 100}] (* Vincenzo Librandi, Mar 10 2013 *)
LinearRecurrence[{13,-33,31,-10},{0,1,14,149},20] (* Harvey P. Dale, May 25 2024 *)
A099672
Partial sums of repdigits of A002279.
Original entry on oeis.org
5, 60, 615, 6170, 61725, 617280, 6172835, 61728390, 617283945, 6172839500, 61728395055, 617283950610, 6172839506165, 61728395061720, 617283950617275, 6172839506172830, 61728395061728385, 617283950617283940, 6172839506172839495, 61728395061728395050, 617283950617283950605
Offset: 1
5 + 55 + 555 + 5555 + 55555 = a(5) = 61725.
-
<Robert G. Wilson v, Nov 20 2004 *)
Accumulate[Table[FromDigits[PadRight[{},n,5]],{n,0,20}]] (* Harvey P. Dale, Oct 05 2013 *)
-
Vec(5*x/((1 - x)^2*(1 - 10*x)) + O(x^40)) \\ Colin Barker, Nov 30 2017
Comments