cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 42 results. Next

A178643 Square array read by antidiagonals. Convolution of a(n) = 2*a(n-1) - a(n-2) and 10^n.

Original entry on oeis.org

1, 10, 2, 100, 19, 4, 1000, 190, 36, 8, 10000, 1900, 361, 68, 16, 100000, 19000, 3610, 686, 128, 32, 1000000, 190000, 36100, 6859, 1304, 240, 64, 10000000, 1900000, 361000, 68590, 13032, 2480, 448, 128, 100000000, 19000000, 3610000, 685900, 130321, 24760, 4720, 832, 256
Offset: 1

Views

Author

Mark Dols, May 31 2010

Keywords

Comments

Diagonals sum up to A014824.
Alternating diagonal sum gives decimal expansion of fraction 1/119 (A021123).

Examples

			Array starts:
     1,    2,    4,    8,
    10,   19,   36,   68,
   100,  190,  361,  686,
  1000, 1900, 3610, 6859,
		

Crossrefs

Programs

  • Sage
    def a(n,k):
        T = [[0 for j in range(k+1)] for i in range(n+1)]
        for i in range(n+1): T[i][0] = 10^i
        for j in range(1, k+1):
            T[0][j] = 2^j
            for i in range(1, n+1): T[i][j] = 2*T[i][j-1] - T[i-1][j-1]
        return T[n][k]  # Robin Visser, Aug 09 2023

Formula

T(n,k) = 2*T(n,k-1) - T(n-1,k-1) for all n, k > 0, where T(n,0) = 10^n and T(0,k) = 2^k. - Robin Visser, Aug 09 2023

Extensions

More terms from Robin Visser, Aug 09 2023

A180027 Partial sums of A100706.

Original entry on oeis.org

1, 112, 11223, 1122334, 112233445, 11223344556, 1122334455667, 112233445566778, 11223344556677889, 1122334455667789000, 112233445566778900111, 11223344556677890011222, 1122334455667789001122333, 112233445566778900112233444, 11223344556677890011223344555, 1122334455667789001122334455666
Offset: 0

Views

Author

Mark Dols, Aug 07 2010

Keywords

Comments

Up to n=8 the digits of a(n) sum up to n^2.
Similar to this, A014824 (1,12,123,1234,...) is a representation of the triangular numbers; (1,1112,1112223,1112223334,...) of the pentagonal numbers;(1,11112,111122223,...) of the hexagonal numbers, and so on. A nice thing about this sequence(s) is that the (represented) value of the integer matches the partial sums of the number of digits in the sequence.
f(n) = 100*f(n-1) + A100706(n) gives a mirrored version of this sequence, and f(n) = 10*f(n-1) + A100706(n) the symmetrical version (A002477).

Crossrefs

Programs

Formula

a(n) = Sum_{k=0..n} A100706(k). - Michel Marcus, Mar 12 2023

Extensions

More terms and edited by Michel Marcus, Mar 12 2023

A180039 Combinatorial tetrahedral numbers.

Original entry on oeis.org

1, 112, 111223, 1111222334, 111112222333445, 111111222223333444556, 1111111222222333334444555667, 111111112222222333333444445555666778, 111111111222222223333333444444555556666777889
Offset: 1

Views

Author

Mark Dols, Aug 07 2010

Keywords

Comments

These are partial sums in adding base-1 triangular numbers (1 + 111 + 111111 + 1111111111,...).
Third row of:
1,2,3,4,5,...
1,12,123,1234,12345,...
1,112,111223,1111222334,111112222333445,...
1,1112,1111112223,11111111112222223334,11111111111111122222222223333334445,..

Examples

			For n=4, a(4)= 1 + 111 + 111111 + 1111111111 = 1111222334.
Combinatorially:
1,12,123,1234,12345,123456,...
1,21,321,4321,54321,654321,...
----------------------------- X
1,112,111223,1111222334.......
For n =(4),a(4)= 4 x 1 + 3 x 2 + 2 x 3 + 1 x 4 = 1111 + 222 + 33 + 4 = 1111222334.
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[FromDigits[PadRight[{},n,1]],{n,Accumulate[Range[10]]}]] (* Harvey P. Dale, Jun 12 2021 *)

Formula

a(n) = Sum_{i=1..n} A002275(A000217(i)). - R. J. Mathar, Nov 02 2016

A249181 a(n) = A057137(n)^2 where A057137 = 0,1,12,123,...,123...90,...

Original entry on oeis.org

0, 1, 144, 15129, 1522756, 152399025, 15241383936, 1524155677489, 152415765279684, 15241578750190521, 1524157875019052100, 152415787526596567801, 15241578753153483936144, 1524157875322755800955129, 152415787532374345526722756, 15241578753238669120562399025
Offset: 0

Views

Author

M. F. Hasler, Oct 22 2014

Keywords

Comments

A very common playful operation on pocket calculators is to type as many digits 123... as the display allows and then squaring it by pressing the "X" and then the "=" key. On basic pocket calculators this yields an overflow with the first digits of, e.g., a(8) displayed, viz "E 1524157.6".

Examples

			a(3) = 123^2 = 15129.
a(10) = 1234567890^2 = 1524157875019052100.
		

Programs

  • Magma
    [(137174210*10^n div 1111111111)^2: n in [0..20]]; // Vincenzo Librandi, Oct 23 2014
  • PARI
    print1(t=0);for(i=1,19,t=t*10+i%10;print1(","t*t))
    
  • PARI
    A249181(n)=(137174210*10^n\1111111111)^2
    

Formula

For n<10, a(n) = A014824(n)^2 = floor(10^(n+1)/81-n/9)^2.
a(n) ~ 1.524157875...*10^(2n-2).

A332082 a(n) = Sum_{1 <= m <= n} Sum_{1 <= k <= n+1-m} m*R(k,n+1), where R(k,b) = (b^k - 1)/(b - 1) is the base-b repunit of length k.

Original entry on oeis.org

0, 1, 7, 42, 295, 2675, 31122, 447188, 7661370, 152415765, 3452271185, 87693358654, 2468455488681, 76256200336407, 2564715882332660, 93281313241869480, 3647955866777821668, 152635100350763019705, 6803550294289868214315, 321844061970058547739730, 16103630469426364324556635
Offset: 0

Views

Author

M. F. Hasler, Aug 19 2020

Keywords

Comments

This is the sum of all elements of a triangular matrix (of size n given by the index) where the k-th diagonal is filled with k-repdigits (in base n+1, as to have digits up to n) of increasing length, as in
( 1 0 0 . . . . . . . . 0 )
( 2 11 0 : )
( 3 22 111 ˙ · . : )
( : 33 222 ˙ · . ˙ · . : )
( : ˙ · . ˙ · . ˙ · . 0 )
( n . . . . . 3..3 2...2 1....1 )
with numbers written in base n+1.

Examples

			a(2) = 2 + 1 + 11[3] = 3 + 4 = 7.
a(3) = 3 + 2 + 22[4] + 1 + 11[4] + 111[4] = 6 + 15 + 21 = 42.
a(4) = 4 + 3 + 33[5] + 2 + 22[5] + 222[5] + 1 + 11[5] + 111[5] + 1111[5] = 10 + 36 + 93 + 156 = 295.
		

Crossrefs

For base 10 repunits and repdigits, cf. A002275 (repunits), A010785 (repdigits) and A014824 (partial sums of repunits).

Programs

  • Mathematica
    a[n_] := Sum[(n + 1 - m)*((n + 1)*((n + 1)^m - 1) - m*n)/n^2, {m, 1, n}]; Array[a, 21, 0] (* Amiram Eldar, Aug 24 2020 *)
  • PARI
    apply( {A332082(n)=sum(m=1,n,(n+1-m)*((n+1)*((n+1)^m-1)-m*n)\n^2)}, [0..20])

A359846 a(n) = (((5 - (n mod 2))*10^(3 + n*(9/2) - (n mod 2)*(5/2)))^2 + 2)/81.

Original entry on oeis.org

308642, 1975308642, 308641975308641975308642, 1975308641975308641975308642, 308641975308641975308641975308641975308642, 1975308641975308641975308641975308641975308642, 308641975308641975308641975308641975308641975308641975308642
Offset: 0

Views

Author

Thomas Scheuerle, Jan 15 2023

Keywords

Comments

Also numbers of the form ((d*10^k)^2 + 2)/9^2 that are not squares, where d is a single-digit number.
The square roots of these numbers show runs of equal digits, see the link to Schizophrenic numbers.

Examples

			a(0) = 308642 and sqrt(a(0)) = 555.555577777777333333351111110222222271999997013333521... .
a(1) = 1975308642 and sqrt(a(1)) = 44444.4444447222222222213541666666720920138888465033637... .
		

Crossrefs

Cf. A014824.

Programs

  • Mathematica
    A359846[n_] := (10^(9*n - 5*# + 6)*(# - 5)^2 + 2)/81 & [Mod[n, 2]]; Array[A359846, 10, 0] (* or *)
    LinearRecurrence[{1, 10^18, -10^18}, {308642, 1975308642, 308641975308641975308642}, 10] (* Paolo Xausa, Jan 23 2025 *)
  • PARI
    a(n) = (((5-(n%2))*10^(3+n*(9/2)-(n%2)*(5/2)))^2+2)/81

Formula

G.f.: (2/81)*(1/(1-x)+6249960/(1+1000000000*x)+6250040/(1-1000000000*x)).
a(n) = a(n-1) + 10^18*a(n-2) - 10^18*a(n-3).
a(2*n) = (25*10^(6 + 18*n) + 2)/81.
a(2*n + 1) = (16*10^(10 + 18*n) + 2)/81.
We use in the next formulas a special notation for real numbers where (x) after a digit denotes a run of length x for this digit. Example: 3(4).2(3) is 3333.2222 .
sqrt(a(2*n)) = 5(3+9*n).5(4+9*n)7(8+18*n)3(7+18*n)5(1)1(6+18*n)0(1)2(7+18*n)7(1)1(1)9(5+18*n)7(1)0(1)1(1)3(4+18*n)... .
sqrt(a(2*n+1)) = 4(5+9*n).4(6+9*n)7(1)2(10+18*n)1(1)3(1)5(1)4(1)1(1)6(6+18*n)7(1)2(1)0(1)9(1)2(1)0(1)1(1)3(1)8(4+18*n)... .
sqrt(1/a(2*n)) = 0.0(2+9*n)1(1)7(1)9(6+18*n)2(1)8(1)0(5+18*n)... .
sqrt(1/a(2*n+1)) = 0.0(4+9*n)2(2)4(1)9(8+18*n)8(1)5(1)9(1)3(1)7(1)5(1)0(5+18*n)... .
sqrt(a(2*n)-(2/81)) = 10^(4+9*n)/18.
sqrt(a(2*n+1)-(2/81)) = 10^(7+9*n)/225.

A055528 a(n) = 10*a(n-1)+n^3, a(0)=0.

Original entry on oeis.org

0, 1, 18, 207, 2134, 21465, 214866, 2149003, 21490542, 214906149, 2149062490, 21490626231, 214906264038, 2149062642577, 21490626428514, 214906264288515, 2149062642889246, 21490626428897373, 214906264288979562, 2149062642889802479, 21490626428898032790
Offset: 0

Views

Author

Henry Bottomley, Jul 04 2000

Keywords

Comments

a(n)/10^n converges to 470/2187=0.214906264...

Crossrefs

Cf. A014824.

Programs

  • Mathematica
    RecurrenceTable[{a[0]==0,a[n]==10a[n-1]+n^3},a,{n,20}] (* Harvey P. Dale, Mar 21 2023 *)
  • PARI
    concat(0, Vec(-x*(x^2+4*x+1)/((x-1)^4*(10*x-1)) + O(x^100))) \\ Colin Barker, Sep 13 2014

Formula

a(n) = (10^n-1)*(470/2187)-n^3/9-n^2*(10/27)-n*(110/243).
G.f.: -x*(x^2+4*x+1) / ((x-1)^4*(10*x-1)). - Colin Barker, Sep 13 2014

Extensions

Corrected by T. D. Noe, Nov 08 2006
More terms from Colin Barker, Sep 13 2014

A055530 The recurrence b(k) = 10*b(k-1) + k^n with b(0)=0 has b(k)/10^k converging to a(n)/9^(n+1).

Original entry on oeis.org

1, 10, 110, 1410, 22110, 428610, 10027710, 274463010, 8585407710, 302029998210, 11804909261310, 507547187120610, 23805911748929310, 1209638912316543810, 66192799008847310910, 3880867089138927234210, 242703222549879015746910
Offset: 0

Views

Author

Henry Bottomley, Jul 04 2000

Keywords

References

  • Alex Walker, On the Growth of Sequences, 2007

Crossrefs

Programs

  • Maple
    a:=n->sum(9^(n+1)*x^n/10^x,x=1..infinity): seq(a(n),n=0..17); # Emeric Deutsch, Mar 23 2007

Formula

a(n) = Sum_{x>=1} (9^(n+1))(x^n) / 10^x. - Alexander Walker, Feb 26 2007

Extensions

Corrected and extended by Emeric Deutsch, Mar 23 2007

A099670 Partial sums of repdigits of A002277.

Original entry on oeis.org

3, 36, 369, 3702, 37035, 370368, 3703701, 37037034, 370370367, 3703703700, 37037037033, 370370370366, 3703703703699, 37037037037032, 370370370370365, 3703703703703698, 37037037037037031, 370370370370370364, 3703703703703703697, 37037037037037037030, 370370370370370370363
Offset: 1

Views

Author

Labos Elemer, Nov 17 2004

Keywords

Examples

			3 + 33 + 333 + 3333 = a(4) = 3702.
		

Crossrefs

Programs

  • Maple
    a:=n->sum((10^(n-j)-1^(n-j))/3,j=0..n): seq(a(n), n=1..18); # Zerinvary Lajos, Jan 15 2007
  • Mathematica
    <Robert G. Wilson v, Nov 20 2004 *)

Formula

a(n) = (3/81)*(10^(n+1) - 9*n - 10). - R. Piyo (nagoya314(AT)yahoo.com), Dec 10 2004
From Elmo R. Oliveira, Apr 02 2025: (Start)
G.f.: 3*x/((1 - x)^2*(1 - 10*x)).
E.g.f.: 3*exp(x)*(10*exp(9*x) - 9*x - 10)/81.
a(n) = 3*A014824(n).
a(n) = 12*a(n-1) - 21*a(n-2) + 10*a(n-3) for n > 3. (End)

Extensions

More terms from Elmo R. Oliveira, Apr 02 2025

A099671 Partial sums of repdigits of A002278.

Original entry on oeis.org

4, 48, 492, 4936, 49380, 493824, 4938268, 49382712, 493827156, 4938271600, 49382716044, 493827160488, 4938271604932, 49382716049376, 493827160493820, 4938271604938264, 49382716049382708, 493827160493827152, 4938271604938271596, 49382716049382716040, 493827160493827160484
Offset: 1

Views

Author

Labos Elemer, Nov 17 2004

Keywords

Examples

			4 + 44 + 444 + 4444 + 44444 = a(5) = 49380.
		

Crossrefs

Programs

  • Mathematica
    <Robert G. Wilson v, Nov 20 2004 *)

Formula

a(n) = (4/81)*(10^(n+1) - 9*n - 10). - R. Piyo (nagoya314(AT)yahoo.com), Dec 10 2004
From Chai Wah Wu, Feb 28 2018: (Start)
a(n) = 12*a(n-1) - 21*a(n-2) + 10*a(n-3) for n > 3.
G.f.: 4*x/((1 - x)^2*(1 - 10*x)). (End)
From Elmo R. Oliveira, Apr 03 2025: (Start)
E.g.f.: 4*exp(x)*(10*exp(9*x) - 9*x - 10)/81.
a(n) = 4*A014824(n). (End)

Extensions

More terms from Elmo R. Oliveira, Apr 03 2025
Previous Showing 31-40 of 42 results. Next