cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A120622 Numbers k such that the k-th Catalan number C(2k, k)/(k + 1) is divisible by k/2 but not divisible by k.

Original entry on oeis.org

4, 24, 40, 72, 304, 480, 560, 1032, 1248, 1376, 1440, 1632, 1696, 2128, 2320, 2400, 2576, 2720, 3360, 3520, 4104, 4176, 4240, 4320, 4368, 4704, 4896, 5056, 5280, 5568, 5664, 5824, 6160, 6240, 6592, 6848, 6976, 7200, 7360, 7744, 8064, 8200, 8240, 8272
Offset: 1

Views

Author

Robert G. Wilson v, Jun 19 2006

Keywords

Crossrefs

Programs

  • Mathematica
    fQ[n_] := fQ[n_] := IntegerQ[ Binomial[2n, n]/(n(n + 1)/2)] && !IntegerQ[ Binomial[2n, n]/n]; Select[ Range@8719, fQ@# &]

Extensions

Better description from Joel B. Lewis, Nov 15 2006

A120623 Numbers n such that the n-th Catalan number C(2n, n)/(n + 1) is divisible by n/3 but not divisible by n.

Original entry on oeis.org

3, 12, 18, 84, 99, 120, 198, 216, 273, 342, 432, 522, 540, 792, 828, 945, 975, 984, 990, 1035, 1071, 1323, 1377, 1512, 1548, 1575, 1710, 1755, 1863, 2052, 2106, 2226, 2385, 2442, 2790, 2928, 3009, 3015, 3132, 3198, 3483, 3672, 3807, 3915, 3996, 4212, 4428
Offset: 1

Views

Author

Robert G. Wilson v, Jun 19 2006

Keywords

Crossrefs

Programs

  • Mathematica
    fQ[n_] := fQ[n_] := IntegerQ[ Binomial[2n, n]/(n(n + 1)/3)] && !IntegerQ[ Binomial[2n, n]/n]; Select[ Range@4463, fQ@# &]
  • Python
    A120623_list, b = [], 1
    for n in range(1, 10**5):
        if b % n and not (3*b) % n:
            A120623_list.append(n)
        b = b*(4*n+2)//(n+2) # Chai Wah Wu, Mar 30 2016

Extensions

Better description from Joel B. Lewis, Nov 15 2006

A120624 Numbers n such that the n-th Catalan number C(2n,n)/(n+1) is divisible by 2n.

Original entry on oeis.org

6, 28, 42, 45, 66, 77, 91, 110, 126, 140, 153, 156, 170, 187, 190, 204, 209, 210, 220, 228, 231, 238, 266, 276, 299, 308, 312, 315, 322, 325, 330, 345, 378, 414, 420, 429, 435, 440, 442, 450, 459, 460, 468, 476, 483, 493, 496, 510, 527, 551, 558, 561, 570
Offset: 1

Views

Author

Robert G. Wilson v, Jun 19 2006

Keywords

Comments

Equivalently, numbers such that the n-th central binomial coefficient C(2n, n) is divisible by 2n(n + 1). - Joel B. Lewis, Jan 07 2008

Crossrefs

Subset of A014847.
Cf. A120622.

Programs

  • Mathematica
    fQ[n_] := fQ[n_] := IntegerQ[ Binomial[2n, n]/(2n(n + 1))]; Select[ Range@8719, fQ@# &]
    Select[Range[600],Divisible[CatalanNumber[#],2#]&] (* Harvey P. Dale, Aug 30 2016 *)
  • Python
    from _future_ import division
    A120624_list, b = [], 1
    for n in range(1,10**5):
        if not b % (2*n):
            A120624_list.append(n)
        b = b*(4*n+2)//(n+2) # Chai Wah Wu, Mar 25 2016

Extensions

Definition corrected by Joel B. Lewis, Apr 30 2009

A260636 a(n) = binomial(3n, n) mod n.

Original entry on oeis.org

0, 1, 0, 3, 3, 0, 3, 7, 3, 5, 3, 0, 3, 8, 9, 15, 3, 15, 3, 15, 0, 4, 3, 12, 3, 2, 3, 12, 3, 24, 3, 15, 18, 15, 0, 9, 3, 34, 6, 31, 3, 21, 3, 0, 15, 38, 3, 36, 3, 40, 33, 40, 3, 42, 0, 16, 27, 44, 3, 0, 3, 46, 45, 47, 39, 51, 3, 53, 15, 0, 3, 45, 3, 15, 9, 20, 76, 0, 3, 7, 3
Offset: 1

Views

Author

M. F. Hasler, Nov 11 2015

Keywords

Comments

Motivated by A080469: C(3n,n)=3^n (mod n), A109641, A109642 and other sequences.
See A059288 for the "2n" analog. Sequence A260640 yields the indices of zeros (analog to A014847 for 2n).

Examples

			n=1: C(3,1) = 3 = 0 (mod 1).
n=2: C(3*2,2) = 15 = 1 (mod 2).
n=3: C(3*3,3) = 84 = 0 (mod 3).
n=4: C(3*4,4) = 495 = 3 (mod 4).
		

Crossrefs

Cf. A080469, A109641, A109642; A260640 (indices of zeros); A059288, A014847 (analogs for 2n).

Programs

  • Magma
    [Binomial(3*n,n) mod n : n in [1..100]]; // Wesley Ivan Hurt, Nov 12 2015
    
  • Maple
    A260636:=n->binomial(3*n,n) mod n: seq(A260636(n), n=1..100); # Wesley Ivan Hurt, Nov 12 2015
  • Mathematica
    Array[Mod[Binomial[3 #, #], #] &, 112] (* Michael De Vlieger, Nov 12 2015 *)
  • PARI
    a(n)=binomial(3*n,n)%n
    
  • PARI
    A260636(n)=lift(binomod(3*n,n,n)) \\ using binomod.gp by M. Alekseyev, cf. Links.
    
  • Python
    from _future_ import division
    A260636_list, b = [], 3
    for n in range(1,10001):
        A260636_list.append(b % n)
        b = b*3*(3*n+2)*(3*n+1)//((2*n+2)*(2*n+1)) # Chai Wah Wu, Jan 27 2016

A260640 Numbers n such that binomial(3*n,n) == 0 (mod n).

Original entry on oeis.org

1, 3, 6, 12, 21, 35, 44, 55, 60, 70, 78, 88, 90, 99, 102, 110, 117, 119, 120, 133, 156, 171, 176, 180, 184, 204, 207, 220, 225, 230, 231, 234, 238, 240, 247, 252, 255, 285, 286, 300, 312, 341, 342, 348, 360, 368, 372, 391, 403, 408, 414, 425, 434, 460, 462, 465, 468, 481, 483, 494, 495, 504, 506, 510, 550, 555, 561, 572, 574, 585, 600
Offset: 1

Views

Author

M. F. Hasler, Nov 11 2015

Keywords

Comments

See A014847 for the analog for 2n.

Crossrefs

Programs

  • Magma
    [n: n in [1..600] |Binomial(3*n,n) mod n eq 0]; // Vincenzo Librandi, Jan 29 2016
  • Mathematica
    Select[Range@ 600, Mod[Binomial[3 #, #], #] == 0 &] (* Michael De Vlieger, Nov 12 2015 *)
  • PARI
    for(n=1,999,binomod(3*n,n,n)==0&&print1(n",")) \\ Using binomod.gp by M. Alekseyev, cf. links.
    
  • Python
    from _future_ import division
    A260640_list, b = [], 3
    for n in range(1,10**3):
        if not b % n:
            A260640_list.append(n)
        b = b*3*(3*n+2)*(3*n+1)//((2*n+2)*(2*n+1)) # Chai Wah Wu, Jan 27 2016
    

A048618 Even numbers n such that binomial(n,n/2) is divisible by n/2.

Original entry on oeis.org

2, 4, 12, 30, 40, 56, 84, 90, 132, 154, 176, 182, 208, 220, 252, 280, 306, 312, 340, 374, 380, 408, 418, 420, 440, 456, 462, 476, 480, 532, 552, 598, 616, 624, 630, 644, 650, 660, 690, 736, 756, 828, 840, 858, 870, 880, 884, 900, 918, 920, 928, 936, 952, 966
Offset: 1

Views

Author

Keywords

Examples

			For n=30, binomial(30,15) = 155117520 = 15^10341168, so 30 is a term.
		

Crossrefs

Cf. A001405, A020475, A014847, A067348 (binomial(2*n,n) is divisible by 2*n).

Programs

  • Maple
    a:=[];
    for n from 1 to 1000 do if ( binomial(2*n,n) mod n ) = 0 then a:=[op(a),2*n]; fi; od;
    a;   # N. J. A. Sloane, Aug 03 2017
  • Mathematica
    Select[Range[2,1000,2],Mod[Binomial[#,#/2],#/2]==0&] (* Harvey P. Dale, Jan 23 2025 *)

Formula

a(n) = 2 * A014847(n). - Rémy Sigrist, Aug 27 2017

Extensions

Definition corrected by N. J. A. Sloane, Aug 03 2017

A278961 Triangle read by rows: row n consists of k, 1<=k<=n, such that binomial(n,k) is divisible by gcd(n,k).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 3, 4, 6, 7, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 5, 6, 7, 10, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 3, 5, 9, 11, 13, 1, 2, 4, 7, 8, 11, 13, 14, 1, 2
Offset: 1

Views

Author

Robert Israel, Dec 02 2016

Keywords

Comments

All k coprime to n are always included, in particular 1 and n-1.
Row n contains k if and only if it contains n-k.
A014847 consists of k such that row 2k contains k.
If n is prime or the square of a prime, row n contains all numbers from 1 to n-1. This is not true for higher powers: row p^r does not contain any multiples of p^(r-1) if r > 2.
Prime p is in row n>p if and only if the p-adic order of n is not 1.

Examples

			Row 8 contains 2 because gcd(8,2)=2 divides binomial(8,2) = 28, but not 4 because gcd(8,4)=4 does not divide binomial(8,4)= 70.
		

Crossrefs

Cf. A014847.

Programs

  • Maple
    f:= proc(n,m) if binomial(n,m) mod igcd(n,m) = 0 then m else NULL fi end proc:
    seq(seq(f(n,m),m=1..n),n=1..40);
  • Mathematica
    Table[If[Divisible[Binomial[n,k],GCD[n,k]],k,Nothing],{n,20},{k,n}]//Flatten (* Harvey P. Dale, Dec 04 2022 *)

A325630 Numbers k such that A000110(k) is divisible by k.

Original entry on oeis.org

1, 2, 35, 16833, 16989, 23684
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 07 2019

Keywords

Comments

No other terms below 50000.
From Amiram Eldar, Jun 20 2024: (Start)
Numbers k such that A166226(k) = 0.
All the terms above 2 are composites since A166226(p) == 2 (mod p) for prime p. (End)
No other terms below 90000. - Michael S. Branicky, Jan 09 2025

Examples

			35 is in the sequence because A000110(35) = 35 * 8045720086273150473238297902.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], Divisible[BellB[#], #] &]

A073077 Numbers k that divide C(2k,k) and C(4k,2k).

Original entry on oeis.org

1, 2, 20, 110, 156, 210, 220, 238, 240, 312, 460, 468, 483, 510, 561, 600, 624, 665, 684, 696, 720, 744, 770, 806, 812, 816, 868, 936, 966, 1001, 1012, 1045, 1064, 1100, 1110, 1122, 1144, 1155, 1170, 1200, 1295, 1309, 1320, 1326, 1332, 1360, 1368, 1394, 1404
Offset: 1

Views

Author

Benoit Cloitre, Aug 17 2002

Keywords

Crossrefs

Subsequence of A014847.

Programs

  • Mathematica
    Select[Range[1500], Divisible[Binomial[2*#, #], #] && Divisible[Binomial[4*#, 2*#], #] &] (* Amiram Eldar, Apr 26 2025 *)
  • PARI
    isok(n) = !(binomial(2*n, n) % n) && !(binomial(4*n, 2*n) % n); \\ Michel Marcus, Nov 28 2013

Extensions

More terms from Michel Marcus, Nov 28 2013

A227902 Numbers n such that triangular(n) divides binomial(2n,n).

Original entry on oeis.org

1, 2, 4, 6, 15, 20, 24, 28, 40, 42, 45, 66, 72, 77, 88, 91, 104, 110, 126, 140, 153, 156, 170, 187, 190, 204, 209, 210, 220, 228, 231, 238, 240, 266, 276, 299, 304, 308, 312, 315, 322, 325, 330, 345, 368, 378, 414, 420, 429, 435, 440, 442, 450, 459, 460, 464, 468, 476, 480
Offset: 1

Views

Author

Alex Ratushnyak, Oct 14 2013

Keywords

Comments

A014847 is a subsequence.

Examples

			triangular(6)=21, A000984(6)=924. Because 21 divides 924, 6 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[480], Mod[Binomial[2 #, #], # (# + 1)/2] == 0 &] (* T. D. Noe, Oct 16 2013 *)
  • PARI
    is(n) = { my(f = factor(binomial(n+1, 2))); for(i = 1, #f~, if(val(2*n, f[i, 1]) - 2*val(n, f[i, 1]) < f[i, 2], return(0) ) ); 1 }
    val(n, p) = my(r=0); while(n, r+=n\=p);r \\ David A. Corneth, Apr 03 2021
  • Python
    from sympy import binomial
    for n in range(1, 444):
        CBC = binomial(2 * n, n)
        if not CBC % binomial(n + 1, 2):
           print(n, end=",")
    
Previous Showing 11-20 of 39 results. Next