A385617
G.f. A(x) satisfies A(x) = 1/( 1 - x*(A(x) + A(2*x)) ).
Original entry on oeis.org
1, 2, 10, 82, 1062, 22646, 846570, 58644858, 7808479582, 2038568219422, 1054007965984050, 1084591195956246130, 2226674324358059364150, 9131600163886719149539590, 74851744440590132840318820090, 1226745312860243142951267683147178, 40204124737879503807503331117931168974
Offset: 0
-
terms = 17; A[] = 1; Do[A[x] = 1/( 1 - x*(A[x] + A[2*x]) ) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Jul 05 2025 *)
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (2^j+1)*v[j+1]*v[i-j])); v;
A171193
G.f. A(x) satisfies A(x) = 1/(1 - x*A(2*x)^3).
Original entry on oeis.org
1, 1, 7, 109, 3207, 174581, 17929279, 3559607005, 1389312382199, 1075527698708485, 1658535837898129263, 5105026337441341642861, 31395991691829167745766311, 385982564381552315528268500501
Offset: 0
-
nmax = 15; A[] = 0; Do[A[x] = 1/(1 - x*A[2*x]^3) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Nov 03 2021 *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1/(1-x*subst(A, x, 2*x)^3) ); polcoeff(A, n)}
A348875
G.f. A(x) satisfies: A(x) = 1 / (1 - x - x * A(2*x)).
Original entry on oeis.org
1, 2, 8, 56, 656, 13184, 477248, 32524928, 4295916032, 1117098857984, 576442191401984, 592587279827787776, 1215991461595100598272, 4985567391504232291377152, 40861715233637664786276712448, 669641809249948891254213657460736, 21945501536426419427607885034600595456
Offset: 0
-
nmax = 16; A[] = 0; Do[A[x] = 1/(1 - x - x A[2 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + Sum[2^k a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]
A171194
G.f. A(x) satisfies A(x) = 1/(1 - x*A(2*x)^4).
Original entry on oeis.org
1, 1, 9, 185, 7241, 525513, 71973193, 19054326985, 9916177373001, 10235479554015689, 21045100094428458057, 86370025530284981044937, 708236082282948046820221257, 11609413456993946896013575994313
Offset: 0
-
nmax = 15; A[] = 0; Do[A[x] = 1/(1 - x*A[2*x]^4) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Nov 03 2021 *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1/(1-x*subst(A, x, 2*x)^4) ); polcoeff(A, n)}
A171195
G.f. A(x) satisfies A(x) = 1/(1 - x*A(2*x)^5).
Original entry on oeis.org
1, 1, 11, 281, 13731, 1245601, 213268203, 70580511385, 45914883339027, 59241954299963729, 152258885235304955131, 781096727709105092232777, 8006263111571482684378716067, 164048440920655457493139473502081
Offset: 0
-
nmax = 15; A[] = 0; Do[A[x] = 1/(1 - x*A[2*x]^5) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Nov 03 2021 *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1/(1-x*subst(A, x, 2*x)^5) ); polcoeff(A, n)}
A171196
G.f. A(x) satisfies A(x) = 1/(1 - x*A(2*x)^6).
Original entry on oeis.org
1, 1, 13, 397, 23261, 2532093, 520285021, 206632208765, 161306955003037, 249753449538341821, 770275887324912000733, 4741871606773351738426877, 58325180751309642789169099037, 1434100517517383561901937569640509
Offset: 0
-
nmax = 15; A[] = 0; Do[A[x] = 1/(1 - x*A[2*x]^6) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Nov 03 2021 *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1/(1-x*subst(A, x, 2*x)^6) ); polcoeff(A, n)}
A171197
G.f. A(x) satisfies A(x) = 1/(1 - x*A(2*x)^7).
Original entry on oeis.org
1, 1, 15, 533, 36415, 4624621, 1108685495, 513716588981, 467874135168079, 845152554936920445, 3041003426951554000167, 21840734269889733272106629, 313415404907854466274076819391, 8990640466019774671530066108827853
Offset: 0
-
nmax = 15; A[] = 0; Do[A[x] = 1/(1 - x*A[2*x]^7) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Nov 03 2021 *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1/(1-x*subst(A, x, 2*x)^7) ); polcoeff(A, n)}
A348878
G.f. A(x) satisfies: A(x) = 1 / (1 - x - x^2 * A(2*x)).
Original entry on oeis.org
1, 1, 2, 5, 17, 74, 429, 3297, 34578, 495573, 9888497, 274123802, 10685538941, 583079000129, 44945515778914, 4867082587900837, 746167748281132753, 160981861948404281578, 49223569713040994430285, 21198824279482430844823713, 12946110661470835825027893426
Offset: 0
-
nmax = 20; A[] = 0; Do[A[x] = 1/(1 - x - x^2 A[2 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + Sum[2^k a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 20}]
A376095
a(0) = 1; a(n) = Sum_{k=0..n-1} (k+1)^2 * a(k) * a(n-k-1).
Original entry on oeis.org
1, 1, 5, 54, 983, 26863, 1029188, 52747686, 3491367091, 290276997159, 29639219057133, 3648073361410412, 532858993269296500, 91147584892512564076, 18051321652239427195456, 4098339933686479506696526, 1057506667415381878759070811, 307764793378228160791205354175
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[(k + 1)^2 a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 17}]
nmax = 17; A[] = 0; Do[A[x] = 1 + x A[x]^2 + 3 x^2 A[x] A'[x] + x^3 A[x] A''[x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
A348860
G.f. A(x) satisfies: A(x) = 1 / ((1 + x) * (1 - x * A(2*x))).
Original entry on oeis.org
1, 0, 1, 4, 37, 632, 20905, 1359692, 175426573, 45086173824, 23129393794129, 23707675064224020, 48577049664823958389, 199020196349510773741576, 1630572517436087330046884473, 26716930897552073378560239594588, 875487110213852689248519499248558685
Offset: 0
-
nmax = 16; A[] = 0; Do[A[x] = 1/((1 + x) (1 - x A[2 x])) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = (-1)^n + Sum[2^k a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]