A206624
G.f.: Product_{n>0} ( (1+x^n)/(1-x^n) )^(n^4).
Original entry on oeis.org
1, 2, 34, 228, 1414, 8872, 52876, 301136, 1662614, 8929406, 46738920, 239036116, 1197187780, 5882369976, 28397283056, 134864166352, 630819797174, 2908948327780, 13236421303742, 59477002686404, 264104800719672, 1159649708139680, 5037895127964316
Offset: 0
G.f.: A(x) = 1 + 2*x + 18*x^2 + 88*x^3 + 398*x^4 + 1768*x^5 + 7508*x^6 +...
where A(x) = (1+x)/(1-x) * (1+x^2)^16/(1-x^2)^16 * (1+x^3)^81/(1-x^3)^81 *...
Also, A(x) = Euler transform of [2,31,162,496,1250,2511,4802,7936,...]:
A(x) = 1/((1-x)^2*(1-x^2)^31*(1-x^3)^162*(1-x^4)^496*(1-x^5)^1250*(1-x^6)^2511*...).
-
nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k^4), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *)
-
{a(n)=polcoeff(prod(m=1,n+1,((1+x^m)/(1-x^m+x*O(x^n)))^(m^4)),n)}
-
{a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m, 5)-sigma(m, 5))/16*x^m/m)+x*O(x^n)), n)}
-
{a(n)=local(InvEulerGF=x*(2+31*x+152*x^2+341*x^3+460*x^4+341*x^5+152*x^6+31*x^7+2*x^8)/(1-x^2+x*O(x^n))^5); polcoeff(1/prod(k=1,n,(1-x^k+x*O(x^n))^polcoeff(InvEulerGF,k)),n)}
for(n=0,30,print1(a(n),", "))
A207641
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (1+x^k)/(1-x^k).
Original entry on oeis.org
1, 1, 3, 5, 9, 15, 25, 39, 61, 93, 139, 205, 299, 429, 611, 861, 1201, 1663, 2285, 3115, 4221, 5683, 7605, 10123, 13405, 17661, 23163, 30245, 39323, 50925, 65699, 84445, 108167, 138089, 175719, 222921, 281965, 355627, 447309, 561139, 702133, 876395, 1091301
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 5*x^3 + 9*x^4 + 15*x^5 + 25*x^6 + 39*x^7 +...
such that, by definition,
A(x) = 1 + x*(1+x)/(1-x) + x^2*(1+x)*(1+x^2)/((1-x)*(1-x^2)) + x^3*(1+x)*(1+x^2)*(1+x^3)/((1-x)*(1-x^2)*(1-x^3)) +...
- Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 370, 9th equation.
-
a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[ {-x}, {}, x, x], {x, 0, n}]; (* Michael Somos, Mar 11 2014 *)
a[ n_] := SeriesCoefficient[ 1 / ((1 + x) EllipticTheta[ 4, 0, x]), {x, 0, n}]; (* Michael Somos, Nov 20 2015 *)
-
{a(n)=polcoeff(sum(m=0,n,x^m*prod(k=1,m,(1+x^k)/(1-x^k +x*O(x^n))) ),n)}
for(n=0,50,print1(a(n),", "))
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / ((1 + x) * eta(x + A)^2), n))}; /* Michael Somos, Nov 20 2015 */
A235793
Sum of all parts of all overpartitions of n.
Original entry on oeis.org
2, 8, 24, 56, 120, 240, 448, 800, 1386, 2320, 3784, 6048, 9464, 14560, 22080, 32992, 48688, 71064, 102600, 146720, 207984, 292336, 407744, 564672, 776650, 1061424, 1442016, 1947904, 2617192, 3498720, 4654464, 6163584, 8126448, 10669472, 13952400, 18175896
Offset: 1
-
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<1, [0$2], b(n, i-1)+add((l-> l+[0, l[1]*i*j])
(2*b(n-i*j, i-1)), j=1..n/i)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=1..40); # Alois P. Heinz, Jan 21 2014
-
Table[n*Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}], {n, 1, 40}] (* Jean-François Alcover, Oct 20 2016, after Vaclav Kotesovec *)
A235798
Triangle read by rows: T(n,k) = number of occurrences of k in all overpartitions of n.
Original entry on oeis.org
2, 4, 2, 10, 4, 2, 20, 8, 4, 2, 38, 16, 8, 4, 2, 68, 30, 16, 8, 4, 2, 118, 52, 28, 16, 8, 4, 2, 196, 88, 48, 28, 16, 8, 4, 2, 318, 144, 82, 48, 28, 16, 8, 4, 2, 504, 230, 132, 80, 48, 28, 16, 8, 4, 2, 782, 360, 208, 128, 80, 48, 28, 16, 8, 4, 2, 1192, 552, 324, 202, 128, 80, 48, 28, 16, 8, 4, 2
Offset: 1
Triangle begins:
2;
4, 2;
10, 4, 2;
20, 8, 4, 2;
38, 16, 8, 4, 2;
68, 30, 16, 8, 4, 2;
...
-
A(n)={my(p=prod(k=1, n, (1 + x^k)/(1 - x^k) + O(x*x^n))); Mat(vector(n, k, Col(2*(p + O(x*x^(n-k)))*x^k/((1 - x^k)*(1 + x^k)), -n)))}
{ my(T=A(10)); for(n=1, #T, print(T[n, 1..n])) } \\ Andrew Howroyd, Feb 19 2020
A261519
Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(2^k).
Original entry on oeis.org
1, 4, 16, 60, 208, 692, 2224, 6940, 21152, 63188, 185488, 536268, 1529648, 4310804, 12017264, 33171916, 90745472, 246201412, 662897232, 1772295020, 4707336848, 12426673188, 32617079280, 85152717404, 221183486496, 571784014244, 1471463190032, 3770577250716
Offset: 0
-
nmax = 40; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(2^k), {k, 1, nmax}], {x, 0, nmax}], x]
A265758
Expansion of Product_{k>=1} ((1 + k*x^k)/(1 - k*x^k)).
Original entry on oeis.org
1, 2, 6, 16, 38, 88, 200, 428, 902, 1874, 3780, 7504, 14732, 28368, 54052, 101960, 189750, 349996, 640218, 1159624, 2084952, 3722008, 6593560, 11606268, 20308188, 35312170, 61065636, 105060200, 179795936, 306244136, 519291476, 876554860, 1473504846
Offset: 0
-
nmax = 40; CoefficientList[Series[Product[(1 + k*x^k)/(1 - k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A306045
Expansion of e.g.f. Product_{k>=1} (1 + (exp(x) - 1)^k) / (1 - (exp(x) - 1)^k).
Original entry on oeis.org
1, 2, 10, 74, 682, 7562, 98410, 1463114, 24367402, 449039882, 9069093610, 199050295754, 4713774570922, 119735740542602, 3246094020405610, 93519923311825994, 2852458136048627242, 91805618091515859722, 3108657616523130770410, 110453876295411957125834
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[(1 + (Exp[x] - 1)^k) / (1 - (Exp[x] - 1)^k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
A131942
Number of partitions of n in which each odd part has odd multiplicity.
Original entry on oeis.org
1, 1, 1, 3, 3, 6, 6, 11, 13, 21, 24, 35, 44, 59, 74, 99, 126, 158, 202, 250, 320, 392, 495, 598, 758, 908, 1134, 1358, 1685, 2003, 2466, 2925, 3576, 4234, 5129, 6064, 7308, 8612, 10305, 12135, 14443, 16963, 20085, 23548, 27754, 32482, 38105, 44503, 52042
Offset: 0
a(5)=6 because 5, 4+1, 3+2, 2+2+1, 2+1+1+1 and 1+1+1+1+1 have all odd parts with odd multiplicity. The partition 3+1+1 is the partition of 5 which is not counted.
-
A:= series(product( 1/(1-q^(2*n)) *(1+q^(2*n-1)-q^(4*n-2))/(1-q^(4*n-2)), n=1..15),q,25): seq(coeff(A,q,i), i=0..24);
-
nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k-1) - x^(4*k-2))/ ((1-x^(2*k)) * (1-x^(4*k-2))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 03 2016 *)
A230441
Number of overpartitions of n minus the number of partitions of n.
Original entry on oeis.org
0, 1, 2, 5, 9, 17, 29, 49, 78, 124, 190, 288, 427, 627, 905, 1296, 1831, 2567, 3563, 4910, 6709, 9112, 12286, 16473, 21953, 29108, 38388, 50398, 65850, 85683, 111020, 143302, 184263, 236113, 301498, 383757, 486909, 615955, 776921, 977263, 1225934, 1533945
Offset: 0
The 14 overpartitions of 4 are
01: [4],
02: [4'],
03: [2, 2],
04: [2', 2],
05: [3, 1],
06: [3', 1],
07: [3, 1'],
08: [3', 1'],
09: [2, 1, 1],
10: [2', 1, 1],
11: [2, 1', 1],
12: [2', 1', 1],
13: [1, 1, 1, 1],
14: [1', 1, 1, 1].
There are 9 overpartitions that contain at least one overlined part, so a(4) = 9. - _Omar E. Pol_, Jan 19 2014
-
b:= proc(n, i) option remember; `if`(n=0, [1$2], `if`(i<1, [0$2],
b(n, i-1) +add((l->l+[0, l[2]])(b(n-i*j, i-1)), j=1..n/i)))
end:
a:= n-> (l->l[2]-l[1])(b(n$2)):
seq(a(n), n=0..40); # Alois P. Heinz, Jan 30 2014
-
b[n_, i_] := b[n, i] = If[n==0, {1, 1}, If[i<1, {0, 0}, b[n, i-1] + Sum[Function[ {l}, l+{0, l[[2]]}][b[n-i*j, i-1]], {j, 1, n/i}]]]; a[n_] := Function[{l}, l[[2]]-l[[1]]][b[n, n]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 28 2015, after Alois P. Heinz *)
A236000
Triangle read by rows in which row n lists the overpartitions of n in colexicographic order.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 2, 2, 2, 2, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1
Offset: 1
Triangle begins:
[1], [1];
[1, 1], [1, 1], [2], [2];
[1, 1, 1], [1, 1, 1], [2, 1], [2, 1], [2, 1], [2, 1], [3], [3];
[1, 1, 1, 1], [1, 1, 1, 1], [2, 1, 1], [2, 1, 1], [2, 1, 1], [2, 1, 1], [3, 1], [3, 1], [3, 1], [3, 1], [2, 2], [2, 2], [4], [4];
...
Illustration of initial terms (n: 1..4)
-----------------------------------------
n Diagram Overpartition
-----------------------------------------
. _
1 |.| 1',
1 |_| 1;
. _ _
2 |.| | 1', 1,
2 |_| | 1, 1,
2 | .| 2',
2 |_ _| 2;
. _ _ _
3 |.| | | 1', 1, 1,
3 |_| | | 1, 1, 1,
3 | .|.| 2', 1',
3 | |.| 2, 1',
3 | .| | 2', 1,
3 |_ _| | 2, 1,
3 | .| 3',
3 |_ _ _| 3;
. _ _ _ _
4 |.| | | | 1', 1, 1, 1,
4 |_| | | | 1, 1, 1, 1,
4 | .|.| | 2', 1', 1,
4 | |.| | 2, 1', 1,
4 | .| | | 2', 1, 1,
4 |_ _| | | 2, 1, 1,
4 | .|.| 3', 1',
4 | |.| 3, 1',
4 | .| | 3', 1,
4 |_ _ _| | 3, 1,
4 | .| | 2', 2,
4 |_ _| | 2, 2,
4 | .| 4',
4 |_ _ _ _| 4;
.
Comments