cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 191 results. Next

A206624 G.f.: Product_{n>0} ( (1+x^n)/(1-x^n) )^(n^4).

Original entry on oeis.org

1, 2, 34, 228, 1414, 8872, 52876, 301136, 1662614, 8929406, 46738920, 239036116, 1197187780, 5882369976, 28397283056, 134864166352, 630819797174, 2908948327780, 13236421303742, 59477002686404, 264104800719672, 1159649708139680, 5037895127964316
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2012

Keywords

Comments

Convolution of A023873 and A248883. - Vaclav Kotesovec, Aug 19 2015
In general, for m >= 0, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^(k^m), then a(n) ~ ((2^(m+2)-1) * Gamma(m+2) * Zeta(m+2) / (2^(2*m+3) * n))^((1-2*Zeta(-m))/(2*m+4)) * exp((m+2)/(m+1) * ((2^(m+2)-1) * n^(m+1) * Gamma(m+2) * Zeta(m+2) / 2^(m+1))^(1/(m+2)) + Zeta'(-m)) / sqrt((m+2)*Pi*n). - Vaclav Kotesovec, Aug 19 2015
If m is even and m >= 2, then can be simplified as: a(n) ~ ((2^(m+2)-1) * Gamma(m+2) * Zeta(m+2) / (2^(2*m+3) * n))^(1/(2*m+4)) * exp((m+2)/(m+1) * ((2^(m+2)-1) * n^(m+1) * Gamma(m+2) * Zeta(m+2) / 2^(m+1))^(1/(m+2)) + (-1)^(m/2) * Gamma(m+1) * Zeta(m+1) / (2^(m+1) * Pi^m)) / sqrt((m+2)*Pi*n). - Vaclav Kotesovec, Aug 19 2015

Examples

			G.f.: A(x) = 1 + 2*x + 18*x^2 + 88*x^3 + 398*x^4 + 1768*x^5 + 7508*x^6 +...
where A(x) = (1+x)/(1-x) * (1+x^2)^16/(1-x^2)^16 * (1+x^3)^81/(1-x^3)^81 *...
Also, A(x) = Euler transform of [2,31,162,496,1250,2511,4802,7936,...]:
A(x) = 1/((1-x)^2*(1-x^2)^31*(1-x^3)^162*(1-x^4)^496*(1-x^5)^1250*(1-x^6)^2511*...).
		

Crossrefs

Cf. A015128 (m=0), A156616 (m=1), A206622 (m=2), A206623 (m=3), A001160 (sigma_5).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k^4), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *)
  • PARI
    {a(n)=polcoeff(prod(m=1,n+1,((1+x^m)/(1-x^m+x*O(x^n)))^(m^4)),n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m, 5)-sigma(m, 5))/16*x^m/m)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=local(InvEulerGF=x*(2+31*x+152*x^2+341*x^3+460*x^4+341*x^5+152*x^6+31*x^7+2*x^8)/(1-x^2+x*O(x^n))^5); polcoeff(1/prod(k=1,n,(1-x^k+x*O(x^n))^polcoeff(InvEulerGF,k)),n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: exp( Sum_{n>=1} (sigma_5(2*n) - sigma_5(n))/16 * x^n/n ), where sigma_5(n) is the sum of 5th powers of divisors of n (A001160).
Inverse Euler transform has g.f.: x*(2 + 31*x + 152*x^2 + 341*x^3 + 460*x^4 + 341*x^5 + 152*x^6 + 31*x^7 + 2*x^8)/(1-x^2)^5.
a(n) ~ exp(3*2^(2/3)*Pi*n^(5/6)/5 + 3*Zeta(5)/(4*Pi^4)) / (2^(7/6) * 3^(1/2) * n^(7/12)), where Zeta(5) = A013663. - Vaclav Kotesovec, Aug 19 2015
a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A096960(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 30 2017

A207641 G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (1+x^k)/(1-x^k).

Original entry on oeis.org

1, 1, 3, 5, 9, 15, 25, 39, 61, 93, 139, 205, 299, 429, 611, 861, 1201, 1663, 2285, 3115, 4221, 5683, 7605, 10123, 13405, 17661, 23163, 30245, 39323, 50925, 65699, 84445, 108167, 138089, 175719, 222921, 281965, 355627, 447309, 561139, 702133, 876395, 1091301
Offset: 0

Views

Author

Paul D. Hanna, Feb 19 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
In Ramanujan's equation let a = x and b = 1. - Michael Somos, Nov 20 2015

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 5*x^3 + 9*x^4 + 15*x^5 + 25*x^6 + 39*x^7 +...
such that, by definition,
A(x) = 1 + x*(1+x)/(1-x) + x^2*(1+x)*(1+x^2)/((1-x)*(1-x^2)) + x^3*(1+x)*(1+x^2)*(1+x^3)/((1-x)*(1-x^2)*(1-x^3)) +...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 370, 9th equation.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[ {-x}, {}, x, x], {x, 0, n}]; (* Michael Somos, Mar 11 2014 *)
    a[ n_] := SeriesCoefficient[ 1 / ((1 + x) EllipticTheta[ 4, 0, x]), {x, 0, n}]; (* Michael Somos, Nov 20 2015 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,x^m*prod(k=1,m,(1+x^k)/(1-x^k +x*O(x^n))) ),n)}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / ((1 + x) * eta(x + A)^2), n))}; /* Michael Somos, Nov 20 2015 */

Formula

Expansion of 1 / ((1 + x) * phi(-x)) in powers of x where phi() is a Ramanujan theta function. - Michael Somos, Nov 20 2015
G.f.: 1 + x*(1+x) * (1 / (1-x)^2 + 2*x^3 / ((1-x)*(1-x^2))^2 + 2*x^7*(1+x) / ((1-x)*(1-x^2)*(1-x^3))^2 + 2*x^12*(1+x)*(1+x^2) / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4))^2 + ...). [Ramanujan] - Michael Somos, Nov 20 2015
a(n) + a(n+1) = A015128(n+1) for n >= 0. - Seiichi Manyama, Jul 12 2018
a(n) ~ exp(Pi*sqrt(n)) / (16*n). - Vaclav Kotesovec, Jun 18 2019

A235793 Sum of all parts of all overpartitions of n.

Original entry on oeis.org

2, 8, 24, 56, 120, 240, 448, 800, 1386, 2320, 3784, 6048, 9464, 14560, 22080, 32992, 48688, 71064, 102600, 146720, 207984, 292336, 407744, 564672, 776650, 1061424, 1442016, 1947904, 2617192, 3498720, 4654464, 6163584, 8126448, 10669472, 13952400, 18175896
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2014

Keywords

Comments

The equivalent sequence for partitions is A066186.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, [0$2], b(n, i-1)+add((l-> l+[0, l[1]*i*j])
           (2*b(n-i*j, i-1)), j=1..n/i)))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=1..40);  # Alois P. Heinz, Jan 21 2014
  • Mathematica
    Table[n*Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}], {n, 1, 40}] (* Jean-François Alcover, Oct 20 2016, after Vaclav Kotesovec *)

Formula

a(n) = n*A015128(n).
a(n) ~ exp(Pi*sqrt(n)) / 8. - Vaclav Kotesovec, May 19 2018

A235798 Triangle read by rows: T(n,k) = number of occurrences of k in all overpartitions of n.

Original entry on oeis.org

2, 4, 2, 10, 4, 2, 20, 8, 4, 2, 38, 16, 8, 4, 2, 68, 30, 16, 8, 4, 2, 118, 52, 28, 16, 8, 4, 2, 196, 88, 48, 28, 16, 8, 4, 2, 318, 144, 82, 48, 28, 16, 8, 4, 2, 504, 230, 132, 80, 48, 28, 16, 8, 4, 2, 782, 360, 208, 128, 80, 48, 28, 16, 8, 4, 2, 1192, 552, 324, 202, 128, 80, 48, 28, 16, 8, 4, 2
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2014

Keywords

Comments

It appears that row n lists the first differences of row n of triangle A235797 together with 2 (as the final term of the row).
The equivalent sequence for partitions is A066633.

Examples

			Triangle begins:
2;
4,   2;
10,  4,  2;
20,  8,  4,  2;
38, 16,  8,  4,  2;
68, 30, 16,  8,  4,  2;
...
		

Crossrefs

Programs

  • PARI
    A(n)={my(p=prod(k=1, n, (1 + x^k)/(1 - x^k) + O(x*x^n))); Mat(vector(n, k, Col(2*(p + O(x*x^(n-k)))*x^k/((1 - x^k)*(1 + x^k)), -n)))}
    { my(T=A(10)); for(n=1, #T, print(T[n, 1..n])) } \\ Andrew Howroyd, Feb 19 2020

Formula

G.f. of column k: 2*(x^k/((1 - x^k)*(1 + x^k))) * Product_{j>0} (1 + x^j)/(1 - x^j). - Andrew Howroyd, Feb 19 2020

Extensions

Terms a(22) and beyond from Andrew Howroyd, Feb 19 2020

A261519 Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(2^k).

Original entry on oeis.org

1, 4, 16, 60, 208, 692, 2224, 6940, 21152, 63188, 185488, 536268, 1529648, 4310804, 12017264, 33171916, 90745472, 246201412, 662897232, 1772295020, 4707336848, 12426673188, 32617079280, 85152717404, 221183486496, 571784014244, 1471463190032, 3770577250716
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 23 2015

Keywords

Comments

Convolution of A034899 and A102866.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(2^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 2^n * exp(2*sqrt(2*n) - 1 + c) / (sqrt(Pi) * 2^(3/4) * n^(3/4)), where c = 2 * Sum_{j>=1} 1/((2*j+1)*(2^(2*j)-1)) = 0.2545212486386431009939814261118792033...

A265758 Expansion of Product_{k>=1} ((1 + k*x^k)/(1 - k*x^k)).

Original entry on oeis.org

1, 2, 6, 16, 38, 88, 200, 428, 902, 1874, 3780, 7504, 14732, 28368, 54052, 101960, 189750, 349996, 640218, 1159624, 2084952, 3722008, 6593560, 11606268, 20308188, 35312170, 61065636, 105060200, 179795936, 306244136, 519291476, 876554860, 1473504846
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 15 2015

Keywords

Comments

Convolution of A022629 and A006906.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 + k*x^k)/(1 - k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^(n/3), where
c = 28711548.45004804552683870974706458425598... if mod(n,3) = 0
c = 28711547.74098394497470795294574937283075... if mod(n,3) = 1
c = 28711547.58138731567204220029302329316039... if mod(n,3) = 2.

A306045 Expansion of e.g.f. Product_{k>=1} (1 + (exp(x) - 1)^k) / (1 - (exp(x) - 1)^k).

Original entry on oeis.org

1, 2, 10, 74, 682, 7562, 98410, 1463114, 24367402, 449039882, 9069093610, 199050295754, 4713774570922, 119735740542602, 3246094020405610, 93519923311825994, 2852458136048627242, 91805618091515859722, 3108657616523130770410, 110453876295411957125834
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 18 2018

Keywords

Comments

Convolution of A167137 and A305550.

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 + (Exp[x] - 1)^k) / (1 - (Exp[x] - 1)^k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k) * A015128(k) * k!.
a(n) ~ n! * exp(Pi^2 * (1 - log(2)) / (16*log(2)) + Pi * sqrt(n/(2*log(2)))) / (8*n*(log(2))^n).

A131942 Number of partitions of n in which each odd part has odd multiplicity.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 6, 11, 13, 21, 24, 35, 44, 59, 74, 99, 126, 158, 202, 250, 320, 392, 495, 598, 758, 908, 1134, 1358, 1685, 2003, 2466, 2925, 3576, 4234, 5129, 6064, 7308, 8612, 10305, 12135, 14443, 16963, 20085, 23548, 27754, 32482, 38105, 44503, 52042
Offset: 0

Views

Author

Brian Drake, Jul 30 2007

Keywords

Examples

			a(5)=6 because 5, 4+1, 3+2, 2+2+1, 2+1+1+1 and 1+1+1+1+1 have all odd parts with odd multiplicity. The partition 3+1+1 is the partition of 5 which is not counted.
		

Crossrefs

Programs

  • Maple
    A:= series(product( 1/(1-q^(2*n)) *(1+q^(2*n-1)-q^(4*n-2))/(1-q^(4*n-2)), n=1..15),q,25): seq(coeff(A,q,i), i=0..24);
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k-1) - x^(4*k-2))/ ((1-x^(2*k)) * (1-x^(4*k-2))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 03 2016 *)

Formula

G.f.: Product_{n>=1} (1+q^(2n-1)-q^(4n-2))/((1-q^(2n))(1-q^(4n-2))).
a(n) ~ sqrt(Pi^2 + 8*log(phi)^2) * exp(sqrt((Pi^2 + 8*log(phi)^2)*n/2)) / (8*Pi*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jan 03 2016

A230441 Number of overpartitions of n minus the number of partitions of n.

Original entry on oeis.org

0, 1, 2, 5, 9, 17, 29, 49, 78, 124, 190, 288, 427, 627, 905, 1296, 1831, 2567, 3563, 4910, 6709, 9112, 12286, 16473, 21953, 29108, 38388, 50398, 65850, 85683, 111020, 143302, 184263, 236113, 301498, 383757, 486909, 615955, 776921, 977263, 1225934, 1533945
Offset: 0

Views

Author

Omar E. Pol, Jan 09 2014

Keywords

Comments

Number of overpartitions of n that contain at least one overlined part. - Omar E. Pol, Jan 19 2014

Examples

			The 14 overpartitions of 4 are
01: [4],
02: [4'],
03: [2, 2],
04: [2', 2],
05: [3, 1],
06: [3', 1],
07: [3, 1'],
08: [3', 1'],
09: [2, 1, 1],
10: [2', 1, 1],
11: [2, 1', 1],
12: [2', 1', 1],
13: [1, 1, 1, 1],
14: [1', 1, 1, 1].
There are 9 overpartitions that contain at least one overlined part, so a(4) = 9. - _Omar E. Pol_, Jan 19 2014
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1$2], `if`(i<1, [0$2],
          b(n, i-1) +add((l->l+[0, l[2]])(b(n-i*j, i-1)), j=1..n/i)))
        end:
    a:= n-> (l->l[2]-l[1])(b(n$2)):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 30 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, {1, 1}, If[i<1, {0, 0}, b[n, i-1] + Sum[Function[ {l}, l+{0, l[[2]]}][b[n-i*j, i-1]], {j, 1, n/i}]]]; a[n_] := Function[{l}, l[[2]]-l[[1]]][b[n, n]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 28 2015, after Alois P. Heinz *)

Formula

a(n) = A015128(n) - A000041(n).

A236000 Triangle read by rows in which row n lists the overpartitions of n in colexicographic order.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 2, 2, 2, 2, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2014

Keywords

Comments

In the data section the overlined parts cannot be represented correctly, therefore the sequence represents all possible suborderings generated by the overlined parts.
The diagram in the second part of the Example section shows only one of the possible suborderings.
The equivalent sequence for partitions is A211992.
The equivalent sequence for compositions is A228525.
See both sequences for more information.
Row n contains A015128(n) overpartitions.
Row n contains A235792(n) parts.
Row sums give A235793.

Examples

			Triangle begins:
[1], [1];
[1, 1], [1, 1], [2], [2];
[1, 1, 1], [1, 1, 1], [2, 1], [2, 1], [2, 1], [2, 1], [3], [3];
[1, 1, 1, 1], [1, 1, 1, 1], [2, 1, 1], [2, 1, 1], [2, 1, 1], [2, 1, 1], [3, 1], [3, 1], [3, 1], [3, 1], [2, 2], [2, 2], [4], [4];
...
Illustration of initial terms (n: 1..4)
-----------------------------------------
n      Diagram          Overpartition
-----------------------------------------
.       _
1      |.|              1',
1      |_|              1;
.       _ _
2      |.| |            1', 1,
2      |_| |            1,  1,
2      |  .|            2',
2      |_ _|            2;
.       _ _ _
3      |.| | |          1', 1,  1,
3      |_| | |          1,  1,  1,
3      |  .|.|          2', 1',
3      |   |.|          2,  1',
3      |  .| |          2', 1,
3      |_ _| |          2,  1,
3      |    .|          3',
3      |_ _ _|          3;
.       _ _ _ _
4      |.| | | |        1', 1,  1,  1,
4      |_| | | |        1,  1,  1,  1,
4      |  .|.| |        2', 1', 1,
4      |   |.| |        2,  1', 1,
4      |  .| | |        2', 1,  1,
4      |_ _| | |        2,  1,  1,
4      |    .|.|        3', 1',
4      |     |.|        3,  1',
4      |    .| |        3', 1,
4      |_ _ _| |        3,  1,
4      |  .|   |        2', 2,
4      |_ _|   |        2,  2,
4      |      .|        4',
4      |_ _ _ _|        4;
.
		

Crossrefs

Previous Showing 41-50 of 191 results. Next