cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A006906 a(n) is the sum of products of terms in all partitions of n.

Original entry on oeis.org

1, 1, 3, 6, 14, 25, 56, 97, 198, 354, 672, 1170, 2207, 3762, 6786, 11675, 20524, 34636, 60258, 100580, 171894, 285820, 480497, 791316, 1321346, 2156830, 3557353, 5783660, 9452658, 15250216, 24771526, 39713788, 64011924, 102199026, 163583054, 259745051
Offset: 0

Views

Author

Keywords

Comments

a(0) = 1 since the only partition of 0 is the empty partition. The product of its terms is the empty product, namely 1.
Same parity as A000009. - Jon Perry, Feb 12 2004

Examples

			Partitions of 0 are {()} whose products are {1} whose sum is 1.
Partitions of 1 are {(1)} whose products are {1} whose sum is 1.
Partitions of 2 are {(2),(1,1)} whose products are {2,1} whose sum is 3.
Partitions of 3 are 3 => {(3),(2,1),(1,1,1)} whose products are {3,2,1} whose sum is 6.
Partitions of 4 are {(4),(3,1),(2,2),(2,1,1),(1,1,1,1)} whose products are {4,3,4,2,1} whose sum is 14.
		

References

  • G. Labelle, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006906 n = p 1 n 1 where
       p _ 0 s = s
       p k m s | mReinhard Zumkeller, Dec 07 2011
  • Maple
    A006906 := proc(n)
        option remember;
        if n = 0 then
            1;
        else
            add( A078308(k)*procname(n-k),k=1..n)/n ;
        end if;
    end proc: # R. J. Mathar, Dec 14 2011
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1) +add(b(n-i*j, i-1)*(i^j), j=1..n/i)))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 25 2013
  • Mathematica
    (* a[n,k]=sum of products of partitions of n into parts <= k *) a[0,0]=1; a[n_,0]:=0; a[n_,k_]:=If[k>n, a[n,n], a[n,k] = a[n,k-1] + k a[n-k,k] ]; a[n_]:=a[n,n] (* Dean Hickerson, Aug 19 2007 *)
    Table[Total[Times@@@IntegerPartitions[n]],{n,0,35}] (* Harvey P. Dale, Jan 14 2013 *)
    nmax = 40; CoefficientList[Series[Product[1/(1 - k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *)
    nmax = 40; CoefficientList[Series[Exp[Sum[PolyLog[-j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *)

Formula

The limit of a(n+3)/a(n) is 3. However, the limit of a(n+1)/a(n) does not exist. In fact, the sequence {a(n+1)/a(n)} has three limit points, which are about 1.4422447, 1.4422491 and 1.4422549. (See the Links entry.) - Dean Hickerson, Aug 19 2007
a(n) ~ c(n mod 3) 3^(n/3), where c(0)=97923.26765718877..., c(1)=97922.93936857030... and c(2)=97922.90546334208... - Dean Hickerson, Aug 19 2007
G.f.: 1 / Product_{k>=1} (1-k*x^k).
G.f.: 1 + Sum_{n>=1} n*x^n / Product_{k=1..n} (1-k*x^k) = 1 + Sum_{n>=1} n*x^n / Product_{k>=n} (1-k*x^k). - Joerg Arndt, Mar 23 2011
a(n) = (1/n)*Sum_{k=1..n} A078308(k)*a(n-k). - Vladeta Jovovic, Nov 22 2002
O.g.f.: exp( Sum_{n>=1} Sum_{k>=1} k^n * x^(n*k) / n ). - Paul D. Hanna, Sep 18 2017
O.g.f.: exp( Sum_{n>=1} Sum_{k=1..n} A008292(n,k)*x^(n*k)/(n*(1-x^n)^(n+1)) ), where A008292 is the Eulerian numbers. - Paul D. Hanna, Sep 18 2017

Extensions

More terms from Vladeta Jovovic, Oct 04 2001
Edited by N. J. A. Sloane, May 19 2007

A022629 Expansion of Product_{m>=1} (1 + m*q^m).

Original entry on oeis.org

1, 1, 2, 5, 7, 15, 25, 43, 64, 120, 186, 288, 463, 695, 1105, 1728, 2525, 3741, 5775, 8244, 12447, 18302, 26424, 37827, 54729, 78330, 111184, 159538, 225624, 315415, 444708, 618666, 858165, 1199701, 1646076, 2288961, 3150951, 4303995, 5870539, 8032571, 10881794, 14749051, 19992626
Offset: 0

Views

Author

Keywords

Comments

Sum of products of terms in all partitions of n into distinct parts. - Vladeta Jovovic, Jan 19 2002
Number of partitions of n into distinct parts, when there are j sorts of part j. a(4) = 7: 4, 4', 4'', 4''', 31, 3'1, 3''1. - Alois P. Heinz, Aug 24 2015

Examples

			The partitions of 6 into distinct parts are 6, 1+5, 2+4, 1+2+3, the corresponding products are 6,5,8,6 and their sum is a(6) = 25.
		

Crossrefs

Programs

  • Magma
    Coefficients(&*[(1+m*x^m):m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 16 2018
  • Maple
    b:= proc(n, i) option remember; local f, g;
          if n=0 then [1, 1] elif i<1 then [0, 0]
        else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i-1));
             [f[1]+g[1], f[2]+g[2]*i]
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..60);  # Alois P. Heinz, Nov 02 2012
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, i*b(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Aug 24 2015
  • Mathematica
    nn=20;CoefficientList[Series[Product[1+i x^i,{i,1,nn}],{x,0,nn}],x]  (* Geoffrey Critzer, Nov 02 2012 *)
    nmax = 50; CoefficientList[Series[Exp[Sum[(-1)^(j+1)*PolyLog[-j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2015 *)
    (* More efficient program: 10000 terms, 4 minutes, 100000 terms, 6 hours *) nmax = 40; poly = ConstantArray[0, nmax+1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j+1]] += k*poly[[j-k+1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 06 2016 *)
  • PARI
    N=66; q='q+O('q^N); Vec(prod(n=1,N, (1+n*q^n) )) \\ Joerg Arndt, Oct 06 2012
    

Formula

Conjecture: log(a(n)) ~ sqrt(n/2) * (log(2*n) - 2). - Vaclav Kotesovec, May 08 2018

A266941 Expansion of Product_{k>=1} 1 / (1 - k*x^k)^k.

Original entry on oeis.org

1, 1, 5, 14, 42, 103, 289, 690, 1771, 4206, 10142, 23449, 54786, 123528, 279480, 619206, 1366405, 2969071, 6425534, 13727775, 29187555, 61439660, 128620370, 267044222, 551527679, 1130806020, 2306746335, 4676096006, 9432394144, 18920266428, 37776372312
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 06 2016

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n, g(n) = n. - Seiichi Manyama, Nov 18 2017

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-k*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; s = 1 - x; Do[s *= Sum[Binomial[k, j]*(-1)^j*k^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2018 *)

Formula

From Vaclav Kotesovec, Jan 08 2016: (Start)
a(n) ~ c * n^2 * 3^(n/3), where
c = 3278974684037157122864203.021982619109776972432419491714093... if mod(n,3)=0
c = 3278974684037157122864202.999526122508793149896683112820555... if mod(n,3)=1
c = 3278974684037157122864203.001231135511323719311281438384212... if mod(n,3)=2
(End)
In closed form, a(n) ~ (Product_{k>=4}((1 - k/3^(k/3))^(-k)) / ((1 - 2/3^(2/3))^2 * (1 - 1/3^(1/3))) + Product_{k>=4}((1 - (-1)^(2*k/3)*k/3^(k/3))^(-k)) / ((-1)^(2*n/3) * ((1 + 2*(-1)^(1/3)/3^(2/3))^2 * (1 - (-1)^(2/3)/3^(1/3)))) + Product_{k>=4}((1 - (-1)^(4*k/3)*k/3^(k/3))^(-k)) / ((-1)^(4*n/3) * ((1 + (-1/3)^(1/3)) * (1 - 2*(-1/3)^(2/3))^2))) * 3^(n/3) * n^2 / 54. - Vaclav Kotesovec, Apr 24 2017
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} (Sum_{d|k} d^(2+k/d)) * a(n-k) for n > 0. - Seiichi Manyama, Nov 02 2017

A265844 Expansion of Product_{k>=1} (1 + k^2*x^k)/(1 - k^2*x^k).

Original entry on oeis.org

1, 2, 10, 36, 118, 376, 1188, 3456, 10054, 28814, 79280, 215844, 581748, 1528456, 3987384, 10295952, 26130982, 65874532, 164661622, 406787220, 998529752, 2434022304, 5879630196, 14124455856, 33734350692, 80000820426, 188787849968, 443372664504, 1035137265552
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2015

Keywords

Comments

Convolution of A092484 and A077335.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 + k^2*x^k)/(1 - k^2*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^(2*n/3), where
c = 33024.782174678163138510272317... if mod(n,3) = 0
c = 33024.230416953709449028604542... if mod(n,3) = 1
c = 33024.292470246596667257649964... if mod(n,3) = 2.

A266942 Expansion of Product_{k>=1} ((1 + k*x^k) / (1 - k*x^k))^k.

Original entry on oeis.org

1, 2, 10, 36, 118, 376, 1156, 3392, 9734, 27230, 74256, 198724, 522292, 1348968, 3432824, 8613856, 21330374, 52190692, 126262774, 302222388, 716247128, 1681575344, 3912919956, 9028823856, 20667406276, 46949343786, 105881451120, 237135574392, 527580701456
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 06 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+k*x^k)/(1-k*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

From Vaclav Kotesovec, Jan 08 2016: (Start)
a(n) ~ c * n^2 * 3^(n/3), where
c = 1122422673446372185062691708933615715850.583956830118389527... if mod(n,3)=0
c = 1122422673446372185062691708933615715849.484130848291097773... if mod(n,3)=1
c = 1122422673446372185062691708933615715849.782119252925454917... if mod(n,3)=2
(End)

A292317 Expansion of Product_{k>=1} ((1 - k*x^k)/(1 + k*x^k)).

Original entry on oeis.org

1, -2, -2, 0, 6, 8, 0, 4, -10, -50, -36, 16, 12, 80, 44, 88, 390, 180, -94, -712, -1624, -312, -688, 1476, 4444, -6954, -5812, 3816, 7728, 36600, 25708, -13308, -53586, -127048, 10104, 120936, 73490, 157400, -395168, -529472, 833888, 265916, 19300, -1132576
Offset: 0

Views

Author

Seiichi Manyama, Sep 14 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - k*x^k)/(1 + k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 09 2018 *)

Formula

Convolution of A022661 and A022693.
Convolution inverse of A265758.

A292418 a(n) = [x^n] Product_{k>=1} (1 + n^2*x^k) / (1 - n^2*x^k).

Original entry on oeis.org

1, 2, 40, 1800, 149024, 21223800, 4609532520, 1414165715200, 581109518753920, 307788983933760954, 204081628466048180200, 165541724073121026987224, 161233041454793035411134240, 185663865439487951708529417080, 249499302292252719726304186789160
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 16 2017

Keywords

Comments

Convolution of A292304 and A292417.

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[(1+n^2*x^k)/(1-n^2*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
  • PARI
    {a(n)= polcoef(prod(k=1, n, ((1+n^2*x^k)/(1-n^2*x^k) +x*O(x^n))), n)};
    for(n=0,20, print1(a(n), ", ")) \\ G. C. Greubel, Feb 02 2019

Formula

a(n) ~ 2 * n^(2*n) * (1 + 2/n^2 + 4/n^4 + 8/n^6 + 14/n^8 + 24/n^10), for coefficients see A015128.

A326886 E.g.f.: Product_{k>=1} (1 + k*(exp(x)-1)^k) / (1 - k*(exp(x)-1)^k).

Original entry on oeis.org

1, 2, 14, 134, 1574, 22262, 370694, 7008374, 147805574, 3447703862, 88047037574, 2438080410614, 72703788119174, 2321967591003062, 79030014919422854, 2854499200663284854, 109018338380110506374, 4388176453133542327862, 185612789014681549094534
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 31 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1+k*(Exp[x]-1)^k)/(1-k*(Exp[x]-1)^k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) = Sum_{k=0..n} A265758(k)*Stirling2(n,k)*k!.
a(n) ~ c * 2 * (3^(2/3) + 2) * n! / (3*(3^(2/3) - 2) * (3^(1/3) - 1) * log(1 + 3^(-1/3))^(n+1)), where c = Product_{k>=4} (1 + k/3^(k/3)) / (1 - k/3^(k/3)) = 153073.83255100475812062139772279157814388739...
Showing 1-8 of 8 results.