A006906
a(n) is the sum of products of terms in all partitions of n.
Original entry on oeis.org
1, 1, 3, 6, 14, 25, 56, 97, 198, 354, 672, 1170, 2207, 3762, 6786, 11675, 20524, 34636, 60258, 100580, 171894, 285820, 480497, 791316, 1321346, 2156830, 3557353, 5783660, 9452658, 15250216, 24771526, 39713788, 64011924, 102199026, 163583054, 259745051
Offset: 0
Partitions of 0 are {()} whose products are {1} whose sum is 1.
Partitions of 1 are {(1)} whose products are {1} whose sum is 1.
Partitions of 2 are {(2),(1,1)} whose products are {2,1} whose sum is 3.
Partitions of 3 are 3 => {(3),(2,1),(1,1,1)} whose products are {3,2,1} whose sum is 6.
Partitions of 4 are {(4),(3,1),(2,2),(2,1,1),(1,1,1,1)} whose products are {4,3,4,2,1} whose sum is 14.
- G. Labelle, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..6000 (first 1001 terms from T. D. Noe)
- Atreya Chatterjee, Emergent gravity from patterns in natural numbers, arXiv:2006.01170 [gr-qc], 2020.
- Dean Hickerson, Comments on A006906
- Robert Schneider and Andrew V. Sills, The product of parts or 'norm' of a partition, #A13 INTEGERS 20A (2020), Theorem 7, p. 4.
Cf.
A000041,
A007870,
A022629,
A022661,
A022693,
A077335,
A163318,
A265758,
A302830,
A318127,
A322364,
A322365.
-
a006906 n = p 1 n 1 where
p _ 0 s = s
p k m s | mReinhard Zumkeller, Dec 07 2011
-
A006906 := proc(n)
option remember;
if n = 0 then
1;
else
add( A078308(k)*procname(n-k),k=1..n)/n ;
end if;
end proc: # R. J. Mathar, Dec 14 2011
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +add(b(n-i*j, i-1)*(i^j), j=1..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..40); # Alois P. Heinz, Feb 25 2013
-
(* a[n,k]=sum of products of partitions of n into parts <= k *) a[0,0]=1; a[n_,0]:=0; a[n_,k_]:=If[k>n, a[n,n], a[n,k] = a[n,k-1] + k a[n-k,k] ]; a[n_]:=a[n,n] (* Dean Hickerson, Aug 19 2007 *)
Table[Total[Times@@@IntegerPartitions[n]],{n,0,35}] (* Harvey P. Dale, Jan 14 2013 *)
nmax = 40; CoefficientList[Series[Product[1/(1 - k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *)
nmax = 40; CoefficientList[Series[Exp[Sum[PolyLog[-j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *)
A022629
Expansion of Product_{m>=1} (1 + m*q^m).
Original entry on oeis.org
1, 1, 2, 5, 7, 15, 25, 43, 64, 120, 186, 288, 463, 695, 1105, 1728, 2525, 3741, 5775, 8244, 12447, 18302, 26424, 37827, 54729, 78330, 111184, 159538, 225624, 315415, 444708, 618666, 858165, 1199701, 1646076, 2288961, 3150951, 4303995, 5870539, 8032571, 10881794, 14749051, 19992626
Offset: 0
The partitions of 6 into distinct parts are 6, 1+5, 2+4, 1+2+3, the corresponding products are 6,5,8,6 and their sum is a(6) = 25.
-
Coefficients(&*[(1+m*x^m):m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 16 2018
-
b:= proc(n, i) option remember; local f, g;
if n=0 then [1, 1] elif i<1 then [0, 0]
else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i-1));
[f[1]+g[1], f[2]+g[2]*i]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=0..60); # Alois P. Heinz, Nov 02 2012
# second Maple program:
b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, i*b(n-i, i-1))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..60); # Alois P. Heinz, Aug 24 2015
-
nn=20;CoefficientList[Series[Product[1+i x^i,{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Nov 02 2012 *)
nmax = 50; CoefficientList[Series[Exp[Sum[(-1)^(j+1)*PolyLog[-j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2015 *)
(* More efficient program: 10000 terms, 4 minutes, 100000 terms, 6 hours *) nmax = 40; poly = ConstantArray[0, nmax+1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j+1]] += k*poly[[j-k+1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 06 2016 *)
-
N=66; q='q+O('q^N); Vec(prod(n=1,N, (1+n*q^n) )) \\ Joerg Arndt, Oct 06 2012
A266941
Expansion of Product_{k>=1} 1 / (1 - k*x^k)^k.
Original entry on oeis.org
1, 1, 5, 14, 42, 103, 289, 690, 1771, 4206, 10142, 23449, 54786, 123528, 279480, 619206, 1366405, 2969071, 6425534, 13727775, 29187555, 61439660, 128620370, 267044222, 551527679, 1130806020, 2306746335, 4676096006, 9432394144, 18920266428, 37776372312
Offset: 0
-
nmax = 40; CoefficientList[Series[Product[1/(1-k*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 40; s = 1 - x; Do[s *= Sum[Binomial[k, j]*(-1)^j*k^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2018 *)
A265844
Expansion of Product_{k>=1} (1 + k^2*x^k)/(1 - k^2*x^k).
Original entry on oeis.org
1, 2, 10, 36, 118, 376, 1188, 3456, 10054, 28814, 79280, 215844, 581748, 1528456, 3987384, 10295952, 26130982, 65874532, 164661622, 406787220, 998529752, 2434022304, 5879630196, 14124455856, 33734350692, 80000820426, 188787849968, 443372664504, 1035137265552
Offset: 0
-
nmax = 40; CoefficientList[Series[Product[(1 + k^2*x^k)/(1 - k^2*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A266942
Expansion of Product_{k>=1} ((1 + k*x^k) / (1 - k*x^k))^k.
Original entry on oeis.org
1, 2, 10, 36, 118, 376, 1156, 3392, 9734, 27230, 74256, 198724, 522292, 1348968, 3432824, 8613856, 21330374, 52190692, 126262774, 302222388, 716247128, 1681575344, 3912919956, 9028823856, 20667406276, 46949343786, 105881451120, 237135574392, 527580701456
Offset: 0
-
nmax = 40; CoefficientList[Series[Product[((1+k*x^k)/(1-k*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]
A292317
Expansion of Product_{k>=1} ((1 - k*x^k)/(1 + k*x^k)).
Original entry on oeis.org
1, -2, -2, 0, 6, 8, 0, 4, -10, -50, -36, 16, 12, 80, 44, 88, 390, 180, -94, -712, -1624, -312, -688, 1476, 4444, -6954, -5812, 3816, 7728, 36600, 25708, -13308, -53586, -127048, 10104, 120936, 73490, 157400, -395168, -529472, 833888, 265916, 19300, -1132576
Offset: 0
-
nmax = 50; CoefficientList[Series[Product[(1 - k*x^k)/(1 + k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 09 2018 *)
A292418
a(n) = [x^n] Product_{k>=1} (1 + n^2*x^k) / (1 - n^2*x^k).
Original entry on oeis.org
1, 2, 40, 1800, 149024, 21223800, 4609532520, 1414165715200, 581109518753920, 307788983933760954, 204081628466048180200, 165541724073121026987224, 161233041454793035411134240, 185663865439487951708529417080, 249499302292252719726304186789160
Offset: 0
-
nmax = 20; Table[SeriesCoefficient[Product[(1+n^2*x^k)/(1-n^2*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
-
{a(n)= polcoef(prod(k=1, n, ((1+n^2*x^k)/(1-n^2*x^k) +x*O(x^n))), n)};
for(n=0,20, print1(a(n), ", ")) \\ G. C. Greubel, Feb 02 2019
A326886
E.g.f.: Product_{k>=1} (1 + k*(exp(x)-1)^k) / (1 - k*(exp(x)-1)^k).
Original entry on oeis.org
1, 2, 14, 134, 1574, 22262, 370694, 7008374, 147805574, 3447703862, 88047037574, 2438080410614, 72703788119174, 2321967591003062, 79030014919422854, 2854499200663284854, 109018338380110506374, 4388176453133542327862, 185612789014681549094534
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[(1+k*(Exp[x]-1)^k)/(1-k*(Exp[x]-1)^k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
Showing 1-8 of 8 results.
Comments