cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A015882 Numbers k such that sigma(k) = sigma(k+12).

Original entry on oeis.org

35, 104, 285, 287, 310, 329, 340, 345, 406, 609, 660, 736, 767, 957, 1067, 1207, 1242, 1768, 1786, 1817, 1824, 2047, 2288, 2407, 2672, 2686, 2714, 3009, 4012, 4387, 4653, 4847, 6179, 7532, 8366, 8920, 10005, 10528, 11140, 11670, 11951
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A015883 Numbers k such that sigma(k) = sigma(k+13).

Original entry on oeis.org

182, 782, 1965, 2486, 2678, 2685, 12141, 12441, 17342, 21242, 27686, 34905, 35505, 35853, 38662, 38985, 56732, 63578, 104342, 109461, 192933, 198909, 222122, 236966, 245349, 251654, 256322, 261885, 262238, 324441, 333909
Offset: 1

Views

Author

Keywords

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 182, p. 56, Ellipses, Paris 2008.

Crossrefs

Programs

Extensions

Corrected by T. D. Noe, Oct 31 2006

A181647 Numbers m having the same sum of divisors as m+20 has.

Original entry on oeis.org

42, 51, 123, 141, 204, 371, 497, 708, 923, 992, 1034, 1343, 1391, 1484, 1595, 1691, 1826, 3266, 3317, 5015, 5152, 7367, 8003, 9132, 9287, 9494, 11078, 13223, 15458, 15833, 17975, 18752, 19428, 20120, 20915, 21251, 21566, 24119, 24503, 25787, 28000, 29726, 29795
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 03 2010

Keywords

Examples

			a(1) = 42, divisors(42) = {1,2,3,6,7,14,21,42}, divisors(42+20) = {1,2,31,62}: 1+2+3+6+7+14+21+42 = 1+2+31+62.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, Amer. Math. Soc., 2009, page 16.

Crossrefs

Programs

  • Mathematica
    Select[Range[30000], Equal @@ DivisorSigma[1, # + {0, 20}] &] (* Amiram Eldar, Apr 16 2025 *)
  • PARI
    isok(n) = sigma(n) == sigma(n+20); \\ Michel Marcus, Feb 06 2016

Formula

A000203(a(n)) = A000203(a(n) + 20).

A276714 Numbers n such that n and n+3 have the same number and sum of divisors (A000005 and A000203).

Original entry on oeis.org

42677635, 276742235, 6439057062, 7512673242, 43592652562, 48847956255, 48880963215, 55018687182, 60184185702, 91484515395, 100774916235, 101926379835, 111886551315, 122388340095, 133012188855, 137978601142, 247631352255, 263171068875, 293467635615, 305946896255
Offset: 1

Views

Author

Jaroslav Krizek, Sep 16 2016

Keywords

Comments

Intersection of A015861 and A276713.
Also numbers n such that A229335(n) = A229335(n+3).

Examples

			42677635 is in sequence because tau(42677635) = tau(42677638) = 32 and sigma(42677635) = sigma(42677638) = 68769792.
		

Crossrefs

Cf. Similar sequences with numbers n such that n and n+k have the same number and sum of divisors for k=1: A054004, for k=2: A229254.

Programs

  • Magma
    [n: n in [A015861(k)] | NumberOfDivisors(n) eq  NumberOfDivisors(n+3) and SumOfDivisors(n) eq  SumOfDivisors(n+3)]

Extensions

More terms from Martin Ehrenstein, Jul 12 2024

A172333 Numbers m such that m and m+22 have the same sum of divisors.

Original entry on oeis.org

57, 85, 213, 224, 354, 476, 568, 594, 812, 1218, 1235, 1316, 1484, 2103, 2470, 2492, 2643, 2840, 2996, 3836, 3978, 4026, 4544, 4810, 4844, 5012, 6125, 6356, 6524, 7364, 7532, 7648, 8876, 9272, 9328, 10098, 11107, 11797, 12572, 12594, 13412, 13640
Offset: 1

Views

Author

Michel Lagneau, Feb 01 2010

Keywords

Comments

If 3*k-1 and 14*k-1 are both prime with k>1, then n = 28*(3*k-1) belongs to this sequence. The number of such integers n <= x would be asymptotically cx/(log x)^2 for some constant c > 0 from the Hardy-Littlewood conjecture D in Partitio Numerorum. - Tomohiro Yamada, Oct 03 2018

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 62, p. 22, Ellipses, Paris 2008.
  • W. Sierpinski, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 110.
  • Tomohiro Yamada, On equations sigma(n) = sigma(n+k) and phi(n) = phi(n+k), J. Comb. Number Theory 9 (2017), 15-21.

Crossrefs

Programs

  • GAP
    Filtered([1..13700],k->Sigma(k)=Sigma(k+22)); # Muniru A Asiru, Oct 20 2018
  • Maple
    with(numtheory):for n from 1 to 20000 do;if sigma(n) = sigma(n+22) then print(n); else fi ; od;
  • PARI
    isok(k) = sigma(k)==sigma(k+22); \\ Altug Alkan, Oct 03 2018
    

A276713 Numbers n such that n and n+3 have the same number of divisors (A000005).

Original entry on oeis.org

2, 35, 55, 62, 74, 82, 91, 102, 115, 119, 122, 135, 142, 143, 155, 158, 172, 186, 202, 203, 206, 214, 215, 218, 242, 255, 259, 262, 282, 295, 298, 299, 302, 323, 326, 343, 351, 354, 355, 362, 391, 395, 399, 425, 426, 435, 451, 466, 478, 482, 492, 502, 511, 514
Offset: 1

Views

Author

Jaroslav Krizek, Sep 16 2016

Keywords

Examples

			35 is in sequence because tau(35) = tau(38) = 4.
		

Crossrefs

Cf. A065559 (smallest k such that tau(k) = tau(k+n)), A015861 (sigma(n) = sigma(n+3)), A276714.
Cf. Similar sequences with numbers n such that n and n+k have the same number of divisors for k = 1: A005237, for k = 2: A062832.

Programs

  • Magma
    [n: n in [1..10000] | NumberOfDivisors(n) eq  NumberOfDivisors(n+3)]
    
  • Maple
    with(numtheory): A276713:=n->`if`(tau(n) = tau(n+3), n, NULL): seq(A276713(n), n=1..10^3); # Wesley Ivan Hurt, May 02 2017
  • Mathematica
    SequencePosition[DivisorSigma[0,Range[600]],{x_,,,x_}][[All,1]] (* Harvey P. Dale, Nov 12 2022 *)
  • PARI
    isok(n) = numdiv(n) == numdiv(n+3); \\ Michel Marcus, May 03 2017

A321023 Numbers k such that sigma(k) = sigma(k + 15).

Original entry on oeis.org

26, 62, 20840574, 25741470, 60765690, 102435795, 277471467, 361466454, 464465910, 1110512403, 1927430490, 2741174163, 3631266639, 3844534602, 3982743750, 4565968407, 4612184562, 4829319495, 4981969978, 7066794735, 13484870399, 14268004443, 14550390855, 15051147111
Offset: 1

Views

Author

Tomohiro Yamada, Oct 26 2018

Keywords

Examples

			sigma(26) = sigma(41) = 42, sigma(62) = sigma(77) = 96.
		

Crossrefs

Programs

  • PARI
    my(V=vector(15)); for(n=1, 2^28, my(s=sigma(n), r=(n%15)+1); if (s==V[r], print1(n-15, ", ")); V[r]=s)

Extensions

a(7)-a(9) from Amiram Eldar, Oct 26 2018
a(10)-a(24) from Giovanni Resta, Oct 26 2018
Previous Showing 11-17 of 17 results.