cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A244673 Numbers k that divide 2^k + 4.

Original entry on oeis.org

1, 2, 3, 4, 20, 260, 740, 2132, 2180, 5252, 43364, 49268, 49737, 80660, 130052, 293620, 542852, 661412, 717027, 865460, 1564180, 2185220, 2192132, 2816372, 3784916, 4377620, 4427540, 5722004, 6307652, 6919460, 8765252, 9084452, 9498260, 9723611, 11346260, 12208820, 12220132
Offset: 1

Views

Author

Derek Orr, Jul 14 2014

Keywords

Examples

			2^2 + 4 = 8 is divisible by 2. Thus 2 is a term of this sequence.
2^3 + 4 = 12 is divisible by 3. Thus 3 is a term of this sequence.
2^4 + 4 = 20 is divisible by 4. Thus 4 is a term of this sequence.
		

Crossrefs

The odd terms form A115976.

Programs

  • Maple
    A244673:=n->`if`(type((2^n+4)/n, integer), n, NULL): seq(A244673(n), n=1..10^5); # Wesley Ivan Hurt, Jul 15 2014
    Alternative:
    select(n -> 4 + 2&^n mod n = 0, [$1..10^5]); # Robert Israel, Jul 15 2014
  • Mathematica
    Select[Range[1000], Mod[2^# + 4, #] == 0 &] (* Alonso del Arte, Jul 14 2014 *)
    Join[{1,2,3},Select[Range[1223*10^4],PowerMod[2,#,#]==#-4&]] (* Harvey P. Dale, Jan 16 2023 *)
  • PARI
    for(n=1, 10^8, if(Mod(2,n)^n+4==0, print1(n, ", "))) \\ Jens Kruse Andersen, Jul 15 2014

A276967 Odd integers n such that 2^n == 2^3 (mod n).

Original entry on oeis.org

1, 3, 9, 15, 21, 33, 39, 51, 57, 63, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, 195, 201, 213, 219, 237, 249, 267, 291, 303, 309, 315, 321, 327, 339, 381, 393, 399, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633, 669, 681, 687, 693, 699, 717, 723, 731, 753, 771, 789, 807
Offset: 1

Views

Author

Max Alekseyev, Sep 22 2016

Keywords

Comments

Also, integers n such that 2^(n - 3) == 1 (mod n).
Contains A033553 as a subsequence. Smallest term greater than 3 missing in A033553 is 731.
For all m, 2^A015921(m) - 1 belongs to this sequence.

Crossrefs

The odd terms of A015922.
Odd integers n such that 2^n == 2^k (mod n): A176997 (k = 1), A173572 (k = 2), this sequence (k = 3), A033984 (k = 4), A276968 (k = 5), A215610 (k = 6), A276969 (k = 7), A215611 (k = 8), A276970 (k = 9), A215612 (k = 10), A276971 (k = 11), A215613 (k = 12).

Programs

  • Mathematica
    Join[{1}, Select[Range[1, 1023, 2], PowerMod[2, # - 3, #] == 1 &]] (* Alonso del Arte, Sep 22 2016 *)
  • PARI
    isok(n) = (n % 2) && (Mod(2,n)^n==8); \\ Michel Marcus, Sep 23 2016

A296370 Numbers m such that 2^m == 3/2 (mod m).

Original entry on oeis.org

1, 111481, 465793, 79036177, 1781269903307, 250369632905747, 708229497085909, 15673900819204067
Offset: 1

Views

Author

Max Alekseyev, Dec 11 2017

Keywords

Comments

Equivalently, 2^(m+1) == 3 (mod m).
Also, numbers m such that 2^(m+1) - 2 is a Fermat pseudoprime base 2, i.e., 2^(m+1) - 2 belongs to A015919 and A006935.
Some larger terms (may be not in order): 2338990834231272653581, 341569682872976768698011746141903924998969680637.

Crossrefs

Solutions to 2^m == k (mod m): this sequence (k=3/2), A187787 (k=1/2), A296369 (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    Select[Range[10^6], Divisible[2^(# + 1) - 3, #] &] (* Robert Price, Oct 11 2018 *)

Formula

a(n) = A296104(n) - 1.

A303009 Numbers n such that both A002450(n)=(2^(2n)-1)/3 and A007583(n)=2*A002450(n)+1 are Fermat pseudoprimes to base 2 (A001567).

Original entry on oeis.org

23, 29, 41, 53, 89, 113, 131, 179, 191, 233, 239, 251, 281, 293, 341, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953, 1013, 1019, 1031, 1049, 1103, 1223, 1229, 1271, 1289, 1409, 1439, 1451, 1481, 1499, 1511, 1559, 1583, 1601, 1733, 1811, 1889, 1901, 1931, 1973, 2003
Offset: 1

Views

Author

Max Alekseyev, Apr 23 2018

Keywords

Comments

It can be shown that if n is odd, it is a prime or a Fermat 4-pseudoprime (A020136) not divisible by 3. Similarly, 2n+1 is a prime or a Fermat 2-pseudoprime (A001567) not divisible by 3. In fact, the sequence is the union of the following six:
(i) primes n such that 2n+1 is prime (cf. A005384) and A007583(n) is composite, with smallest such term n=a(1)=23;
(ii) primes n==2 (mod 3) such that 2n+1 is a 2-psp (no such terms are known);
(iii) 4-pseudoprimes n==5 (mod 6) such that 2n+1 is prime and A007583(n) is composite, with smallest such term n=a(15)=341;
(iv) 4-pseudoprimes n==5 (mod 6) such that 2n+1 is 2-pseudoprime, with smallest such term n=268435455;
(v) n=2k, where 4k is in A015921 and k==1 (mod 3), such that 2n+1 is prime and A007583(n) is composite, with the smallest such term n=67166;
(vi) n=2k, where 4k is in A015921 and k==1 (mod 3), such that 2n+1 is a 2-psp, with the smallest such term n=9042986.

Crossrefs

Extensions

Edited by Max Alekseyev, Aug 08 2019

A192109 Numbers k that divide 2^(k-1) - 2.

Original entry on oeis.org

1, 2, 6, 10, 14, 22, 26, 30, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 170, 178, 182, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514, 526, 538, 542, 554, 562, 566, 586, 614, 622, 626
Offset: 1

Views

Author

Max Alekseyev, Apr 22 2013

Keywords

Crossrefs

Contains A216090 as subsequence.
Subsequence of A015921, consisting of the terms that are not multiples of 4.
The odd terms form A173572.

Programs

  • Haskell
    import Data.List (elemIndices)
    a192109 n = a192109_list !! (n-1)
    a192109_list = map (+ 1) $ elemIndices 0 $ zipWith mod a000918_list [1..]
    -- Reinhard Zumkeller, Apr 23 2013
    
  • Mathematica
    Join[{1,2},Select[Range[700],PowerMod[2,#-1,#]==2&]] (* Harvey P. Dale, May 15 2015 *)
  • PARI
    is(n)=Mod(2,n)^(n-1)==2 \\ Charles R Greathouse IV, Nov 04 2016

A319216 Numbers k such that k^2 + 1 divides 2^k + 2.

Original entry on oeis.org

0, 1, 3, 15, 79, 511, 4095, 6735, 65535, 2097151, 16777215, 75955411, 68719476735, 137438953471
Offset: 1

Views

Author

Altug Alkan, Sep 13 2018, following a suggestion from Max Alekseyev

Keywords

Comments

Numbers t such that 2^t-1 is a term are 0, 1, 2, 4, 9, 12, 16, 21, ...
Primes p such that 2^((p^2-1)/2)-1 is a term are 3, 5, 7, 13, 19, 29, 37, 43, 47, 61, 71, 89, 103, 107, 127, 131, 139, 173, 191, 211, ...(cf. A062326).
a(14) > 10^11. - Hiroaki Yamanouchi, Sep 14 2018

Crossrefs

Programs

  • PARI
    isok(n)=Mod(2, n^2+1)^n==-2;

Extensions

a(13) from Hiroaki Yamanouchi, Sep 14 2018
a(14) from Giovanni Resta, Sep 17 2018

A334634 Numbers m that divide 2^m + 11.

Original entry on oeis.org

1, 13, 16043199041, 91118493923, 28047837698634913
Offset: 1

Views

Author

Max Alekseyev, Sep 10 2020

Keywords

Comments

Equivalently, numbers m such that 2^m == -11 (mod m).
No other terms below 10^17.

Crossrefs

Solutions to 2^n == k (mod n): A296370 (k=3/2), A187787 (k=1/2), A296369 (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), this sequence (k=-11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12).

Extensions

a(5) from Sergey Paramonov, Oct 10 2021
Previous Showing 11-17 of 17 results.