cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A017174 a(n) = (9*n + 1)^2.

Original entry on oeis.org

1, 100, 361, 784, 1369, 2116, 3025, 4096, 5329, 6724, 8281, 10000, 11881, 13924, 16129, 18496, 21025, 23716, 26569, 29584, 32761, 36100, 39601, 43264, 47089, 51076, 55225, 59536, 64009, 68644
Offset: 0

Views

Author

Keywords

Crossrefs

Sequences of the form (m*n+1)^2: A000012 (m=0), A000290 (m=1), A016754 (m=2), A016778 (m-3), A016814 (m=4), A016862 (m=5), A016922 (m=6), A016994 (m=7), A017078 (m=8), this sequence (m=9), A017282 (m=10), A017402 (m=11), A017534 (m=12), A134934 (m=14).
Cf. A017222.

Programs

Formula

G.f.: x*(1 + 97*x + 64*x^2)/(1-x)^3. - Bruno Berselli, Aug 25 2011
From G. C. Greubel, Dec 28 2022: (Start)
a(2*n) = A016754(9*n).
a(2*n+1) = 4*A017222(n).
E.g.f.: (1 + 99*x + 81*x^2)*exp(x). (End)

A017402 a(n) = (11*n+1)^2.

Original entry on oeis.org

1, 144, 529, 1156, 2025, 3136, 4489, 6084, 7921, 10000, 12321, 14884, 17689, 20736, 24025, 27556, 31329, 35344, 39601, 44100, 48841, 53824, 59049, 64516, 70225, 76176, 82369, 88804, 95481, 102400
Offset: 0

Views

Author

Keywords

Crossrefs

Sequences of the form (m*n+1)^2: A000012 (m=0), A000290 (m=1), A016754 (m=2), A016778 (m=3), A016814 (m=4), A016862 (m=5), A016922 (m=6), A016994 (m=7), A017078 (m=8), A017174 (m=9), A017282 (m=10), this sequence (m=11), A017534 (m=12), A134934 (m=14).

Programs

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 05 2014
From G. C. Greubel, Dec 24 2022: (Start)
G.f.: (1 + 141*x + 100*x^2)/(1-x)^3.
E.g.f.: (1 + 143*x + 121*x^2)*exp(x). (End)

A017534 a(n) = (12*n + 1)^2.

Original entry on oeis.org

1, 169, 625, 1369, 2401, 3721, 5329, 7225, 9409, 11881, 14641, 17689, 21025, 24649, 28561, 32761, 37249, 42025, 47089, 52441, 58081, 64009, 70225, 76729, 83521, 90601, 97969, 105625, 113569, 121801
Offset: 0

Views

Author

Keywords

Crossrefs

Sequences of the form (m*n+1)^2: A000012 (m=0), A000290 (m=1), A016754 (m=2), A016778 (m=3), A016814 (m=4), A016862 (m=5), A016922 (m=6), A016994 (m=7), A017078 (m=8), A017174 (m=9), A017282 (m=10), A017402 (m=11), this sequence (m=12), A134934 (m=14).
Cf. A082043.

Programs

  • Magma
    I:=[1, 169, 625]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jul 07 2012
    
  • Mathematica
    CoefficientList[Series[(1+166*x+121*x^2)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, Jul 07 2012 *)
    LinearRecurrence[{3,-3,1},{1,169,625},30] (* Harvey P. Dale, Feb 27 2023 *)
  • PARI
    a(n)=(12*n+1)^2 \\ Charles R Greathouse IV, Jun 17 2017
    
  • SageMath
    [(12*n+1)^2 for n in range(51)] # G. C. Greubel, Dec 24 2022

Formula

G.f.: (1 + 166*x + 121*x^2 )/(1-x)^3. - R. J. Mathar, Mar 10 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 07 2012
E.g.f.: (1 + 168*x + 144*x^2)*exp(x). - G. C. Greubel, Dec 24 2022

A082043 Square array, A(n, k) = (k*n)^2 + 2*k*n + 1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 25, 16, 1, 1, 25, 49, 49, 25, 1, 1, 36, 81, 100, 81, 36, 1, 1, 49, 121, 169, 169, 121, 49, 1, 1, 64, 169, 256, 289, 256, 169, 64, 1, 1, 81, 225, 361, 441, 441, 361, 225, 81, 1, 1, 100, 289, 484, 625, 676, 625, 484, 289, 100, 1
Offset: 0

Views

Author

Paul Barry, Apr 03 2003

Keywords

Examples

			Array, A(n, k), begins as:
  1,   1,   1,    1,    1,    1,    1,    1,     1, ... A000012;
  1,   4,   9,   16,   25,   36,   49,   64,    81, ... A000290;
  1,   9,  25,   49,   81,  121,  169,  225,   289, ... A016754;
  1,  16,  49,  100,  169,  256,  361,  484,   625, ... A016778;
  1,  25,  81,  169,  289,  441,  625,  841,  1089, ... A016814;
  1,  36, 121,  256,  441,  676,  961, 1296,  1681, ... A016862;
  1,  49, 169,  361,  625,  961, 1369, 1849,  2401, ... A016922;
  1,  64, 225,  484,  841, 1296, 1849, 2500,  3249, ... A016994;
  1,  81, 289,  625, 1089, 1681, 2401, 3249,  4225, ... A017078;
  1, 100, 361,  784, 1369, 2116, 3025, 4096,  5329, ... A017174;
  1, 121, 441,  961, 1681, 2601, 3721, 5041,  6561, ... A017282;
  1, 144, 529, 1156, 2025, 3136, 4489, 6084,  7921, ... A017402;
  1, 169, 625, 1369, 2401, 3721, 5329, 7225,  9409, ... A017534;
  1, 196, 729, 1600, 2809, 4356, 6241, 8464, 11025, ... ;
Antidiagonals, T(n, k), begin as:
  1;
  1,   1;
  1,   4,   1;
  1,   9,   9,   1;
  1,  16,  25,  16,   1;
  1,  25,  49,  49,  25,   1;
  1,  36,  81, 100,  81,  36,   1;
  1,  49, 121, 169, 169, 121,  49,   1;
  1,  64, 169, 256, 289, 256, 169,  64,   1;
  1,  81, 225, 361, 441, 441, 361, 225,  81,   1;
  1, 100, 289, 484, 625, 676, 625, 484, 289, 100,  1;
		

Crossrefs

Diagonals include A000583, A058031, A062938, A082044 (main diagonal).
Diagonal sums (row sums if viewed as number triangle) are A082045.

Programs

  • Magma
    A082043:= func< n,k | (k*(n-k))^2 +2*k*(n-k) +1 >;
    [A082043(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 24 2022
    
  • Mathematica
    T[n_, k_]:= (k*(n-k))^2 +2*k*(n-k) +1;
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 24 2022 *)
  • SageMath
    def A082043(n,k): return (k*(n-k))^2 +2*k*(n-k) +1
    flatten([[A082043(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Dec 24 2022

Formula

A(n, k) = (k*n)^2 + 2*k*n + 1 (square array).
T(n, k) = (k*(n-k))^2 + 2*k*(n-k) + 1 (number triangle).
A(k, n) = A(n, k).
T(n, n-k) = T(n, k).
A(n, n) = T(2*n, n) = A082044(n).
A(n, n-1) = T(2*n+1, n-1) = A058031(n), n >= 1.
A(n, n-2) = T(2*(n-1), n) = A000583(n-1), n >= 2.
A(n, n-3) = T(2*n-3, n) = A062938(n-3), n >= 3.
Sum_{k=0..n} T(n, k) = A082045(n) (diagonal sums).
Sum_{k=0..n} (-1)^k * T(n, k) = (1/4)*(1+(-1)^n)*(2 - 3*n). - G. C. Greubel, Dec 24 2022

A134934 a(n) = (14*n+1)^2.

Original entry on oeis.org

1, 225, 841, 1849, 3249, 5041, 7225, 9801, 12769, 16129, 19881, 24025, 28561, 33489, 38809, 44521, 50625, 57121, 64009, 71289, 78961, 87025, 95481, 104329, 113569, 123201, 133225, 143641, 154449, 165649, 177241, 189225, 201601, 214369, 227529, 241081
Offset: 0

Views

Author

Hans Isdahl, Jan 26 2008

Keywords

Comments

Number of rats in population after n years, starting with one rat at year 0 (see A016754 for more details).

Crossrefs

Sequences of the form (m*n+1)^2: A000012 (m=0), A000290 (m=1), A016754 (m=2), A016778 (m=3), A016814 (m=4), A016862 (m=5), A016922 (m=6), A016994 (m=7), A017078 (m=8), A017174 (m=9), A017282 (m=10), A017402 (m=11), A017534 (m=12), this sequence (m=14).
Cf. A016754.

Programs

Formula

O.g.f.: (1+222*x+169*x^2)/(1-x)^3 = 169/(1-x) - 560/(1-x)^2 + 392/(1-x)^3. - R. J. Mathar, Jan 31 2008
a(n) = A016754(7*n).
E.g.f.: (1 + 224*x + 196*x^2)*exp(x). - G. C. Greubel, Dec 24 2022

A017222 a(n) = (9*n + 5)^2.

Original entry on oeis.org

25, 196, 529, 1024, 1681, 2500, 3481, 4624, 5929, 7396, 9025, 10816, 12769, 14884, 17161, 19600, 22201, 24964, 27889, 30976, 34225, 37636, 41209, 44944, 48841, 52900, 57121, 61504, 66049, 70756
Offset: 0

Views

Author

Keywords

Crossrefs

Sequences of the form (m*n+5)^2: A010864 (m=0), A000290 (m=1), A016754 (m=2), A016790 (m=3), A016814 (m=4), A016850 (m=5), A016970 (m=6), A017042 (m=7), A017126 (m=8), this sequence (m=9), A017330 (m=10), A017450 (m=11), A017582 (m=12).

Programs

Formula

a(n) = A017221(n)^2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 22 2012
G.f.: (25 + 121*x + 16*x^2)/(1-x)^3. - R. J. Mathar, Mar 20 2018
From G. C. Greubel, Dec 29 2022: (Start)
a(2*n+1) = 4*A017246(n).
a(n) = a(n-1) + 9*(18*n + 1).
E.g.f.: (25 + 171*x + 81*x^2)*exp(x). (End)

A017090 a(n) = (8*n + 2)^2.

Original entry on oeis.org

4, 100, 324, 676, 1156, 1764, 2500, 3364, 4356, 5476, 6724, 8100, 9604, 11236, 12996, 14884, 16900, 19044, 21316, 23716, 26244, 28900, 31684, 34596, 37636, 40804, 44100, 47524, 51076, 54756, 58564, 62500, 66564, 70756, 75076, 79524, 84100, 88804, 93636, 98596
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A006752, A016814, A017089 (8n+2), A000290 (n^2).

Programs

Formula

G.f.: -4*(1 + 22*x + 9*x^2)/(x-1)^3. - R. J. Mathar, Jul 14 2016
From Amiram Eldar, Apr 24 2023: (Start)
a(n) = A017089(n)^2.
a(n) = 2^2*A016814(n).
Sum_{n>=0} 1/a(n) = Pi^2/64 + G/8, where G is Catalan's constant (A006752). (End)

A016820 a(n) = (4*n + 1)^8.

Original entry on oeis.org

1, 390625, 43046721, 815730721, 6975757441, 37822859361, 152587890625, 500246412961, 1406408618241, 3512479453921, 7984925229121, 16815125390625, 33232930569601, 62259690411361, 111429157112001, 191707312997281, 318644812890625, 513798374428641
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(4*n+1)^8: n in [0..20]]; // Vincenzo Librandi, Aug 28 2017
  • Maple
    A016820:=n->(4*n+1)^8: seq(A016820(n), n=0..30); # Wesley Ivan Hurt, Jan 22 2017
  • Mathematica
    (4 * Range[0, 20] + 1)^8 (* or *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 390625, 43046721, 815730721, 6975757441, 37822859361, 152587890625, 500246412961, 1406408618241}, 20] (* Harvey P. Dale, Jul 11 2013 *)

Formula

a(0) = 1, a(1) = 390625, a(2) = 43046721, a(3) = 815730721, a(4) = 6975757441, a(5) = 37822859361, a(6) = 152587890625, a(7) = 500246412961, a(8) = 1406408618241, a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9). - Harvey P. Dale, Jul 11 2013
a(n) = A001016(A016813(n)). - Michel Marcus, Jan 23 2017

A017558 a(n) = (12*n + 3)^2.

Original entry on oeis.org

9, 225, 729, 1521, 2601, 3969, 5625, 7569, 9801, 12321, 15129, 18225, 21609, 25281, 29241, 33489, 38025, 42849, 47961, 53361, 59049, 65025, 71289, 77841, 84681, 91809, 99225, 106929, 114921, 123201
Offset: 0

Views

Author

Keywords

Programs

Formula

G.f.: 9*(1 + 22*x + 9*x^2)/(1-x)^3.
a(n) = 9*A016814(n).
a(n) = a(n-1) + 288*n - 72, n >= 1. - Vincenzo Librandi, Mar 20 2011

A227168 a(n) = gcd(2*n, n*(n+1)/2)^2.

Original entry on oeis.org

1, 1, 36, 4, 25, 9, 196, 16, 81, 25, 484, 36, 169, 49, 900, 64, 289, 81, 1444, 100, 441, 121, 2116, 144, 625, 169, 2916, 196, 841, 225, 3844, 256, 1089, 289, 4900, 324, 1369, 361, 6084, 400
Offset: 1

Views

Author

Paul Curtz, Jul 03 2013

Keywords

Comments

a(n) is defined as A062828(n)^2 for n >= 1. If we extend the sequence to n=0 and negative n by use of the recurrence that relates a(n) to a(n+12), a(n+8) and a(n+4), we obtain a(0)=0, a(-1)=4 and a(-n) = A176743(n-2)^2 for n >= 2.
Define c(n) = a(n+2) - a(n-2) for c >= 0. Because a(n) is a shuffle of three interleaved 2nd-order polynomials, c(n) is a shuffle of three interleaved 1st-order polynomials: c(n) = 4* A062828(n)*(periodically repeated 1, 8, 1, 1).
The sequence a(n) is case p=0 of the family A062828(n)*A062828(n+p):
0, 1, 1, 36, 4, 25, 9, 196, ... = a(n).
0, 1, 6, 12, 10, 15, 42, 56, ... = A130658(n)*A000217(n) = A177002(n-1)*A064038(n+1).
0, 6, 2, 30, 6, 70, 12, 126, ... = 2*A198148(n)
0, 2, 5, 18, 28, 20, 27, 70, ... = A177002(n+2)*A160050(n+1) = A014695(n+2)*A000096(n).

Crossrefs

Programs

Formula

a(n) = A062828(n)^2.
a(4n) = (4*n+1)^2; a(2n+1) = (n+1)^2; a(4n+2) = 4*(4*n+3)^2.
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
a(n) * (period 4: repeat 4, 1, 1, 4) = A061038(n).
A005565(n-3) = a(n+1) * A061037(n). - Corrected by R. J. Mathar, Jul 25 2013
a(n) = A130658(n-1)^2 * A181318(n). - Corrected by R. J. Mathar, Aug 01 2013
G.f.: -x*(1 + x + 36*x^2 + 4*x^3 + 22*x^4 + 6*x^5 + 88*x^6 + 4*x^7 + 9*x^8 + x^9 + 4*x^10) / ( (x-1)^3*(1+x)^3*(x^2+1)^3 ). - R. J. Mathar, Jul 20 2013
Sum_{n>=1} 1/a(n) = 47*Pi^2/192 + 3*G/8, where G is Catalan's constant (A006752). - Amiram Eldar, Aug 21 2022
Previous Showing 11-20 of 23 results. Next