cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 52 results. Next

A144650 Triangle read by rows where T(m,n) = 2m*n + m + n + 1.

Original entry on oeis.org

5, 8, 13, 11, 18, 25, 14, 23, 32, 41, 17, 28, 39, 50, 61, 20, 33, 46, 59, 72, 85, 23, 38, 53, 68, 83, 98, 113, 26, 43, 60, 77, 94, 111, 128, 145, 29, 48, 67, 86, 105, 124, 143, 162, 181, 32, 53, 74, 95, 116, 137, 158, 179, 200, 221, 35, 58, 81, 104, 127, 150, 173, 196, 219, 242, 265
Offset: 1

Views

Author

Vincenzo Librandi, Jan 13 2009

Keywords

Comments

First column: A016789, second column: A016885, third column: A017029, fourth column: A017221, fifth column: A017461. - Vincenzo Librandi, Nov 21 2012

Examples

			Triangle begins:
   5;
   8, 13;
  11, 18, 25;
  14, 23, 32, 41;
  17, 28, 39, 50,  61;
  20, 33, 46, 59,  72,  85;
  23, 38, 53, 68,  83,  98, 113;
  26, 43, 60, 77,  94, 111, 128, 145;
  29, 48, 67, 86, 105, 124, 143, 162, 181;
  32, 53, 74, 95, 116, 137, 158, 179, 200, 221; etc.
		

Crossrefs

Columns k: A016789 (k=1), A016885 (k=2), A017029 (k=3), A017221 (k=4), A017461 (k=5).

Programs

  • Magma
    [2*n*k + n + k + 1: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 21 2012
    
  • Mathematica
    T[n_,k_]:= 2 n*k + n + k + 1; Table[T[n, k], {n, 11}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 21 2012 *)
  • SageMath
    flatten([[2*n*k+n+k+1 for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 14 2023

Formula

Sum_{n=1..m} T(m, n) = m*(2*m+3)*(m+1)/2 = A160378(n+1) (row sums). - R. J. Mathar, Jan 15 2009, Jan 05 2011
From G. C. Greubel, Oct 14 2023: (Start)
T(n, n) = A001844(n).
T(n, n-1) = A001105(n), n >= 2.
T(n, n-2) = A142463(n-1), n >= 3.
T(n, n-3) = (-1)*A147973(n+2), n >= 4.
Sum_{k=1..n} (-1)^k*T(n, k) = (-1)^n*A007742(floor((n+1)/2)).
G.f.: x*y*(5 - 2*x - 2*x*y - 2*x^2*y + x^2*y^2)/((1-x)^2*(1-x*y)^3). (End)

A155724 Triangle read by rows: T(n, k) = 2*n*k + n + k - 4.

Original entry on oeis.org

0, 3, 8, 6, 13, 20, 9, 18, 27, 36, 12, 23, 34, 45, 56, 15, 28, 41, 54, 67, 80, 18, 33, 48, 63, 78, 93, 108, 21, 38, 55, 72, 89, 106, 123, 140, 24, 43, 62, 81, 100, 119, 138, 157, 176, 27, 48, 69, 90, 111, 132, 153, 174, 195, 216, 30, 53, 76, 99, 122, 145, 168, 191, 214, 237, 260
Offset: 1

Views

Author

Vincenzo Librandi, Jan 25 2009

Keywords

Examples

			Triangle begins:
   0;
   3,  8;
   6, 13, 20;
   9, 18, 27, 36;
  12, 23, 34, 45,  56;
  15, 28, 41, 54,  67,  80;
  18, 33, 48, 63,  78,  93, 108;
  21, 38, 55, 72,  89, 106, 123, 140;
  24, 43, 62, 81, 100, 119, 138, 157, 176;
  27, 48, 69, 90, 111, 132, 153, 174, 195, 216;
		

Crossrefs

All terms are in A155723.
Cf. A162261 (row sums).
Columns k: A008585 (k=1), A016885 (k=2), A017053 (k=3), 9*A020705 (k=4).
Diagonals include: A139570, A181510, A271625.

Programs

  • Magma
    /* Triangle: */ [[2*m*n+m+n-4: m in [1..n]]: n in [1..10]]; // Bruno Berselli, Aug 31 2012
    
  • Mathematica
    Flatten[Table[2 n m + m + n - 4, {n, 10}, {m, n}]] (* Vincenzo Librandi, Mar 01 2012 *)
  • Python
    def A155724(n,k): return 2*n*k+n+k-4
    print(flatten([[A155724(n,k) for k in range(1,n+1)] for n in range(1,16)])) # G. C. Greubel, Jan 21 2025

Formula

T(n, k) = A154685(n, k) - 8. - L. Edson Jeffery, Oct 12 2012
2*T(n, k) + 9 = (2*k+1)*(2*n+1). - Vincenzo Librandi, Nov 18 2012
From G. C. Greubel, Jan 21 2025: (Start)
T(2*n-1, n) = 4*n^2 + n - 5 (main diagonal).
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (1/4)*( 4*(-1)^(n+1)*n^2 + 2*(2-3*(-1)^n)*n - 7*(1-(-1)^n)).
G.f.: x*y*(3*x + 3*y - 4*x*y)/((1-x)*(1-y))^2. (End)

Extensions

Edited by N. J. A. Sloane, Jun 23 2010

A013824 a(n) = 2^(5*n + 3).

Original entry on oeis.org

8, 256, 8192, 262144, 8388608, 268435456, 8589934592, 274877906944, 8796093022208, 281474976710656, 9007199254740992, 288230376151711744, 9223372036854775808, 295147905179352825856, 9444732965739290427392, 302231454903657293676544, 9671406556917033397649408
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000079 (2^n), A009976, A013822, A013823, A016885 (5*n+3).

Programs

Formula

From Philippe Deléham, Nov 24 2008: (Start)
a(n) = 32*a(n-1), n > 0; a(0)=8.
G.f.: 8/(1-32*x).
a(n) = 8*A009976(n). (End)
From Elmo R. Oliveira, Feb 20 2025: (Start)
E.g.f.: 8*exp(32*x).
a(n) = A000079(A016885(n)). (End)
a(n) = 2*A013823(n) = 4*A013822(n). - Paolo Xausa, Feb 21 2025

A335365 Numbers that are unreachable by the process of starting from 1 and adding 5 and/or multiplying by 3.

Original entry on oeis.org

2, 4, 5, 7, 10, 12, 15, 17, 20, 22, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285
Offset: 1

Views

Author

Alonso del Arte, Jun 03 2020

Keywords

Comments

Start with 1. Add 5 or multiply by 3. Then either add 5 or multiply by 3, and so on and so forth. Following both branches at each step, we can create a tree like this:
1
................../ \..................
6 3
11......../ \........18 8......../ \........9
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
16 33 23 54 13 24 14 27
21 48 38 99 28 69 59 162 18 39 29 72 19 42 32 81
According to Haverbeke (2019), some numbers, like 13, are reachable by this process in at least one way. Other numbers, like 15, are completely unreachable.
In fact, almost all positive integers that are not multiples of 5 are reachable, and all multiples of 5 (A008587) are unreachable.
The latter assertion is proven easily enough by taking note of the powers of 3 modulo 5: 1, 3, 4, 2, 1, 3, 4, 2, 1, 3, 4, 2, ... (A070352).
As for the former assertion, it is enough to note that 26, 27, 28 and 29 are reachable. Given 5k + r, with k > 4 and r one of 1, 2, 3, 4, start with the solution for 25 + r and then, k - 5 times, add 5.
More precisely the sequence consists of all multiples of 5, numbers less than 25 congruent to 2 (mod 5), and 4. - M. F. Hasler, Jun 05 2020

Examples

			Starting with 1, either adding 5 or multiplying by 3 results in a number greater than 2, so 2 is unreachable and therefore in the sequence.
Starting with 1, multiplying by 3 gives 3, proving 3 is reachable and therefore not in the sequence.
		

References

  • Marijn Haverbeke, Eloquent JavaScript, 3rd Ed. San Francisco (2019): No Starch, p. 51.

Crossrefs

Cf. A008587 (subset), A070352, A335392.
Subsets of the complement: A000244, A016861, A016873 (except for first five terms), A016885, A016897 (except for 4).

Programs

  • JavaScript
    // See Haverbeke (2019).
    
  • Mathematica
    LinearRecurrence[{2,-1},{2,4,5,7,10,12,15,17,20,22,25,30},70] (* Harvey P. Dale, Apr 01 2023 *)
  • PARI
    {is(n)=!(n%5&& !while(n>4, n%3|| is(n/3)|| break (n=1); n-=5)&& n%2==1)} \\ Using exhaustive search, for illustration. - M. F. Hasler, Jun 05 2020
    
  • PARI
    select( {is(n)=n%5==0|| (n<23&&(n%5==2||n==4))}, [1..199]) \\ Much more efficient. - M. F. Hasler, Jun 05 2020
    
  • PARI
    Vec(x*(2 - x^2 + x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^10 + 2*x^11) / (1 - x)^2 + O(x^50)) \\ Colin Barker, Jun 07 2020
  • Scala
    // Based on Haverbeke (2019)
    def find153Sol(n: Int): List[Int] = {
      def recur153(curr: Int, history: List[Int]): List[Int] = {
        if (curr == n) history.drop(1) :+ n else if (curr > n) List() else {
          val add5Branch = recur153(curr + 5, history :+ curr)
          if (add5Branch.nonEmpty) add5Branch
              else recur153(curr * 3, history :+ curr)
        }
      }
      recur153(1, List(1))
    }
    (1 to 200).filter(find153Sol(_).isEmpty)
    

Formula

G.f.: (2*x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 + x^3 - x^2 + 2)*x/(x - 1)^2. - Alois P. Heinz, Jun 05 2020
From Colin Barker, Jun 07 2020: (Start)
a(n) = 2*a(n-1) - a(n-2) for n>12.
a(n) = 5*(n-6) for n>10.
(End)

A155551 Triangle read by rows where T(m,n)=2*m*n + m + n - 9.

Original entry on oeis.org

-5, -2, 3, 1, 8, 15, 4, 13, 22, 31, 7, 18, 29, 40, 51, 10, 23, 36, 49, 62, 75, 13, 28, 43, 58, 73, 88, 103, 16, 33, 50, 67, 84, 101, 118, 135, 19, 38, 57, 76, 95, 114, 133, 152, 171, 22, 43, 64, 85, 106, 127, 148, 169, 190, 211, 25, 48, 71, 94, 117, 140, 163, 186, 209
Offset: 1

Views

Author

Vincenzo Librandi, Jan 24 2009

Keywords

Comments

The numbers 2*T(m,n)+19 =(2*n+1)*(2*m+1) are not prime.
First column: A016777, second column: A016885, third column: A016993, fourth column: A017209. - Vincenzo Librandi, Nov 20 2012

Examples

			Triangle begins:
-5;
-2, 3;
1,  8,  15;
4,  13, 22, 31;
7,  18, 29, 40, 51;
10, 23, 36, 49, 62,  75;
13, 28, 43, 58, 73,  88,  103;
16, 33, 50, 67, 84,  101, 118, 135;
19, 38, 57, 76, 95,  114, 133, 152, 171;
22, 43, 64, 85, 106, 127, 148, 169, 190, 211; etc.
		

Crossrefs

Programs

  • Magma
    [2*n*k + n + k - 9: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
  • Mathematica
    t[n_,k_]:=2 n*k + n + k - 9; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)

A016886 a(n) = (5*n + 3)^2.

Original entry on oeis.org

9, 64, 169, 324, 529, 784, 1089, 1444, 1849, 2304, 2809, 3364, 3969, 4624, 5329, 6084, 6889, 7744, 8649, 9604, 10609, 11664, 12769, 13924, 15129, 16384, 17689, 19044, 20449, 21904, 23409, 24964, 26569, 28224, 29929, 31684, 33489, 35344, 37249, 39204, 41209
Offset: 0

Views

Author

Keywords

Examples

			a(0) = (5*0 + 3)^2 = 9.
		

Crossrefs

Programs

  • Magma
    [(5*n + 3)^2 : n in [0..50]]; // Wesley Ivan Hurt, Dec 02 2021
  • Mathematica
    (5*Range[0,40]+3)^2 (* or *) LinearRecurrence[{3,-3,1},{9,64,169},40] (* Harvey P. Dale, Dec 09 2016 *)
    CoefficientList[Series[(9 + x) (1 + 4 x)/(1 - x)^3, {x, 0, 40}], x] (* Michael De Vlieger, Mar 29 2017 *)
  • PARI
    Vec((9 + x)*(1 + 4*x) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Mar 29 2017
    

Formula

From Colin Barker, Mar 29 2017: (Start)
G.f.: (9 + x)*(1 + 4*x) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
(End)
a(n) = A000290(A016885(n)). - Michel Marcus, Mar 30 2017
Sum_{n>=0} 1/a(n) = polygamma(1, 3/5)/25. - Amiram Eldar, Oct 02 2020

A163652 Triangle read by rows where T(n,m)=2*m*n + m + n + 6.

Original entry on oeis.org

10, 13, 18, 16, 23, 30, 19, 28, 37, 46, 22, 33, 44, 55, 66, 25, 38, 51, 64, 77, 90, 28, 43, 58, 73, 88, 103, 118, 31, 48, 65, 82, 99, 116, 133, 150, 34, 53, 72, 91, 110, 129, 148, 167, 186, 37, 58, 79, 100, 121, 142, 163, 184, 205, 226, 40, 63, 86, 109, 132, 155, 178
Offset: 1

Views

Author

Vincenzo Librandi, Aug 02 2009

Keywords

Comments

The numbers 2*T(n,m)-11 = (2*n+1)*(2*m+1) are not prime, and 2*T(n,n) = (2n+1)^2.
First column: A112414, second column: A016885, third column: A017005, fourth column: A017173. - Vincenzo Librandi, Nov 20 2012

Examples

			Triangle begins:
  10;
  13, 18;
  16, 23, 30;
  19, 28, 37, 46;
  22, 33, 44, 55,  66;
  25, 38, 51, 64,  77,  90;
  28, 43, 58, 73,  88,  103, 118;
  31, 48, 65, 82,  99,  116, 133, 150;
  34, 53, 72, 91,  110, 129, 148, 167, 186;
  37, 58, 79, 100, 121, 142, 163, 184, 205, 226;
  40, 63, 86, 109, 132, 155, 178, 201, 224, 247, 270;
  etc.
		

Crossrefs

Programs

  • Magma
    [2*n*k + n + k + 6: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
  • Mathematica
    t[n_,k_]:=2 n*k + n + k +  6; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)

Formula

T(n,m) = A154685(n,m)+2 = A163657(n,m)-2. [R. J. Mathar, Oct 22 2009]

Extensions

Comment clarified by R. J. Mathar, Oct 22 2009

A193872 Even dodecagonal numbers: a(n) = 4*n*(5*n - 2).

Original entry on oeis.org

0, 12, 64, 156, 288, 460, 672, 924, 1216, 1548, 1920, 2332, 2784, 3276, 3808, 4380, 4992, 5644, 6336, 7068, 7840, 8652, 9504, 10396, 11328, 12300, 13312, 14364, 15456, 16588, 17760, 18972, 20224, 21516, 22848, 24220, 25632, 27084, 28576, 30108, 31680, 33292, 34944
Offset: 0

Views

Author

Omar E. Pol, Aug 19 2011

Keywords

Comments

Even 12-gonal numbers. Bisection of A051624.

Crossrefs

Programs

  • Mathematica
    PolygonalNumber[12,2*Range[0,40]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 02 2017 *)
  • PARI
    a(n)=4*n*(5*n-2) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 4*A147874(n+1).
a(n) = 4*n*A016885(n-1), n >= 1.
From Elmo R. Oliveira, Dec 15 2024: (Start)
G.f.: 4*x*(3 + 7*x)/(1 - x)^3.
E.g.f.: 4*x*(3 + 5*x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

A198392 a(n) = (6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16 + 1.

Original entry on oeis.org

2, 4, 12, 18, 31, 41, 59, 73, 96, 114, 142, 164, 197, 223, 261, 291, 334, 368, 416, 454, 507, 549, 607, 653, 716, 766, 834, 888, 961, 1019, 1097, 1159, 1242, 1308, 1396, 1466, 1559, 1633, 1731, 1809, 1912, 1994, 2102, 2188, 2301, 2391, 2509, 2603, 2726, 2824, 2952
Offset: 0

Views

Author

Bruno Berselli, Oct 25 2011

Keywords

Comments

For an origin of this sequence, see the triangular spiral illustrated in the Links section.
First bisection gives A117625 (without the initial term).

Crossrefs

Cf. A152832 (by Superseeker).
Cf. sequences related to the triangular spiral: A022266, A022267, A027468, A038764, A045946, A051682, A062708, A062725, A062728, A062741, A064225, A064226, A081266-A081268, A081270-A081272, A081275 [incomplete list].

Programs

  • Magma
    [(6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16+1: n in [0..50]];
  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1},{2,4,12,18,31},60] (* Harvey P. Dale, Jun 15 2022 *)
  • PARI
    for(n=0, 50, print1((6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16+1", "));
    

Formula

G.f.: (2+2*x+4*x^2+2*x^3-x^4)/((1+x)^2*(1-x)^3).
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5).
a(n)-a(-n-1) = A168329(n+1).
a(n)+a(n-1) = A102214(n).
a(2n)-a(2n-1) = A016885(n).
a(2n+1)-a(2n) = A016825(n).

A226785 If n=0 (mod 7) then a(n)=0, otherwise a(n)=7^(-1) in Z/nZ*.

Original entry on oeis.org

0, 1, 1, 3, 3, 1, 0, 7, 4, 3, 8, 7, 2, 0, 13, 7, 5, 13, 11, 3, 0, 19, 10, 7, 18, 15, 4, 0, 25, 13, 9, 23, 19, 5, 0, 31, 16, 11, 28, 23, 6, 0, 37, 19, 13, 33, 27, 7, 0, 43, 22, 15, 38, 31, 8, 0, 49, 25, 17, 43, 35, 9, 0
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A226785 := proc(n)
        local x,a,m ;
        a := 7 ;
        m := 7 ;
        if igcd(n,m) > 1 or n =1 then
            0;
        else
            msolve(x*a=1,n) ;
            op(%) ;
            op(2,%) ;
        end if;
    end proc: # R. J. Mathar, Jun 28 2013
  • Mathematica
    Inv[a_, mod_] := Which[mod == 1,0, GCD[a, mod] > 1, 0, True, Last@Reduce[a*x == 1, x, Modulus -> mod]];Table[Inv[7, n],{n, 1, 122}]
    Join[{0},LinearRecurrence[{0,0,0,0,0,0,2,0,0,0,0,0,0,-1},{1,1,3,3,1,0,7,4,3,8,7,2,0,13},70]] (* Harvey P. Dale, Nov 15 2014 *)
    Table[If[Mod[n, 7]==0, 0, ModularInverse[7, n]], {n, 1, 100}] (* Jean-François Alcover, Mar 14 2023 *)
  • PARI
    a(n)=if(n%7,lift(Mod(1,n)/7),0) \\ Charles R Greathouse IV, Jun 18 2013

Formula

G.f.: -x^2*(x^13 -x^10 -2*x^9 -x^8 -2*x^7 -7*x^6 -x^4 -3*x^3 -3*x^2 -x -1) / (x^14 -2*x^7 +1). a(n) = 2*a(n-7)-a(n-14). - Colin Barker, Jun 20 2013
a(7n+1) = 6*n+1, n>0. a(7n+2)=A016777(n). a(7n+3) = A005408(n). a(7n+4) = A016885(n). a(7n+5)= A004767(n). a(7n+6)= n+1. - R. J. Mathar, Jun 28 2013
Previous Showing 21-30 of 52 results. Next