A144650
Triangle read by rows where T(m,n) = 2m*n + m + n + 1.
Original entry on oeis.org
5, 8, 13, 11, 18, 25, 14, 23, 32, 41, 17, 28, 39, 50, 61, 20, 33, 46, 59, 72, 85, 23, 38, 53, 68, 83, 98, 113, 26, 43, 60, 77, 94, 111, 128, 145, 29, 48, 67, 86, 105, 124, 143, 162, 181, 32, 53, 74, 95, 116, 137, 158, 179, 200, 221, 35, 58, 81, 104, 127, 150, 173, 196, 219, 242, 265
Offset: 1
Triangle begins:
5;
8, 13;
11, 18, 25;
14, 23, 32, 41;
17, 28, 39, 50, 61;
20, 33, 46, 59, 72, 85;
23, 38, 53, 68, 83, 98, 113;
26, 43, 60, 77, 94, 111, 128, 145;
29, 48, 67, 86, 105, 124, 143, 162, 181;
32, 53, 74, 95, 116, 137, 158, 179, 200, 221; etc.
-
[2*n*k + n + k + 1: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 21 2012
-
T[n_,k_]:= 2 n*k + n + k + 1; Table[T[n, k], {n, 11}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 21 2012 *)
-
flatten([[2*n*k+n+k+1 for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 14 2023
A155724
Triangle read by rows: T(n, k) = 2*n*k + n + k - 4.
Original entry on oeis.org
0, 3, 8, 6, 13, 20, 9, 18, 27, 36, 12, 23, 34, 45, 56, 15, 28, 41, 54, 67, 80, 18, 33, 48, 63, 78, 93, 108, 21, 38, 55, 72, 89, 106, 123, 140, 24, 43, 62, 81, 100, 119, 138, 157, 176, 27, 48, 69, 90, 111, 132, 153, 174, 195, 216, 30, 53, 76, 99, 122, 145, 168, 191, 214, 237, 260
Offset: 1
Triangle begins:
0;
3, 8;
6, 13, 20;
9, 18, 27, 36;
12, 23, 34, 45, 56;
15, 28, 41, 54, 67, 80;
18, 33, 48, 63, 78, 93, 108;
21, 38, 55, 72, 89, 106, 123, 140;
24, 43, 62, 81, 100, 119, 138, 157, 176;
27, 48, 69, 90, 111, 132, 153, 174, 195, 216;
-
/* Triangle: */ [[2*m*n+m+n-4: m in [1..n]]: n in [1..10]]; // Bruno Berselli, Aug 31 2012
-
Flatten[Table[2 n m + m + n - 4, {n, 10}, {m, n}]] (* Vincenzo Librandi, Mar 01 2012 *)
-
def A155724(n,k): return 2*n*k+n+k-4
print(flatten([[A155724(n,k) for k in range(1,n+1)] for n in range(1,16)])) # G. C. Greubel, Jan 21 2025
A013824
a(n) = 2^(5*n + 3).
Original entry on oeis.org
8, 256, 8192, 262144, 8388608, 268435456, 8589934592, 274877906944, 8796093022208, 281474976710656, 9007199254740992, 288230376151711744, 9223372036854775808, 295147905179352825856, 9444732965739290427392, 302231454903657293676544, 9671406556917033397649408
Offset: 0
A335365
Numbers that are unreachable by the process of starting from 1 and adding 5 and/or multiplying by 3.
Original entry on oeis.org
2, 4, 5, 7, 10, 12, 15, 17, 20, 22, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285
Offset: 1
Starting with 1, either adding 5 or multiplying by 3 results in a number greater than 2, so 2 is unreachable and therefore in the sequence.
Starting with 1, multiplying by 3 gives 3, proving 3 is reachable and therefore not in the sequence.
- Marijn Haverbeke, Eloquent JavaScript, 3rd Ed. San Francisco (2019): No Starch, p. 51.
-
// See Haverbeke (2019).
-
LinearRecurrence[{2,-1},{2,4,5,7,10,12,15,17,20,22,25,30},70] (* Harvey P. Dale, Apr 01 2023 *)
-
{is(n)=!(n%5&& !while(n>4, n%3|| is(n/3)|| break (n=1); n-=5)&& n%2==1)} \\ Using exhaustive search, for illustration. - M. F. Hasler, Jun 05 2020
-
select( {is(n)=n%5==0|| (n<23&&(n%5==2||n==4))}, [1..199]) \\ Much more efficient. - M. F. Hasler, Jun 05 2020
-
Vec(x*(2 - x^2 + x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^10 + 2*x^11) / (1 - x)^2 + O(x^50)) \\ Colin Barker, Jun 07 2020
-
// Based on Haverbeke (2019)
def find153Sol(n: Int): List[Int] = {
def recur153(curr: Int, history: List[Int]): List[Int] = {
if (curr == n) history.drop(1) :+ n else if (curr > n) List() else {
val add5Branch = recur153(curr + 5, history :+ curr)
if (add5Branch.nonEmpty) add5Branch
else recur153(curr * 3, history :+ curr)
}
}
recur153(1, List(1))
}
(1 to 200).filter(find153Sol(_).isEmpty)
A155551
Triangle read by rows where T(m,n)=2*m*n + m + n - 9.
Original entry on oeis.org
-5, -2, 3, 1, 8, 15, 4, 13, 22, 31, 7, 18, 29, 40, 51, 10, 23, 36, 49, 62, 75, 13, 28, 43, 58, 73, 88, 103, 16, 33, 50, 67, 84, 101, 118, 135, 19, 38, 57, 76, 95, 114, 133, 152, 171, 22, 43, 64, 85, 106, 127, 148, 169, 190, 211, 25, 48, 71, 94, 117, 140, 163, 186, 209
Offset: 1
Triangle begins:
-5;
-2, 3;
1, 8, 15;
4, 13, 22, 31;
7, 18, 29, 40, 51;
10, 23, 36, 49, 62, 75;
13, 28, 43, 58, 73, 88, 103;
16, 33, 50, 67, 84, 101, 118, 135;
19, 38, 57, 76, 95, 114, 133, 152, 171;
22, 43, 64, 85, 106, 127, 148, 169, 190, 211; etc.
-
[2*n*k + n + k - 9: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
-
t[n_,k_]:=2 n*k + n + k - 9; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)
A016886
a(n) = (5*n + 3)^2.
Original entry on oeis.org
9, 64, 169, 324, 529, 784, 1089, 1444, 1849, 2304, 2809, 3364, 3969, 4624, 5329, 6084, 6889, 7744, 8649, 9604, 10609, 11664, 12769, 13924, 15129, 16384, 17689, 19044, 20449, 21904, 23409, 24964, 26569, 28224, 29929, 31684, 33489, 35344, 37249, 39204, 41209
Offset: 0
-
[(5*n + 3)^2 : n in [0..50]]; // Wesley Ivan Hurt, Dec 02 2021
-
(5*Range[0,40]+3)^2 (* or *) LinearRecurrence[{3,-3,1},{9,64,169},40] (* Harvey P. Dale, Dec 09 2016 *)
CoefficientList[Series[(9 + x) (1 + 4 x)/(1 - x)^3, {x, 0, 40}], x] (* Michael De Vlieger, Mar 29 2017 *)
-
Vec((9 + x)*(1 + 4*x) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Mar 29 2017
A163652
Triangle read by rows where T(n,m)=2*m*n + m + n + 6.
Original entry on oeis.org
10, 13, 18, 16, 23, 30, 19, 28, 37, 46, 22, 33, 44, 55, 66, 25, 38, 51, 64, 77, 90, 28, 43, 58, 73, 88, 103, 118, 31, 48, 65, 82, 99, 116, 133, 150, 34, 53, 72, 91, 110, 129, 148, 167, 186, 37, 58, 79, 100, 121, 142, 163, 184, 205, 226, 40, 63, 86, 109, 132, 155, 178
Offset: 1
Triangle begins:
10;
13, 18;
16, 23, 30;
19, 28, 37, 46;
22, 33, 44, 55, 66;
25, 38, 51, 64, 77, 90;
28, 43, 58, 73, 88, 103, 118;
31, 48, 65, 82, 99, 116, 133, 150;
34, 53, 72, 91, 110, 129, 148, 167, 186;
37, 58, 79, 100, 121, 142, 163, 184, 205, 226;
40, 63, 86, 109, 132, 155, 178, 201, 224, 247, 270;
etc.
-
[2*n*k + n + k + 6: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
-
t[n_,k_]:=2 n*k + n + k + 6; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)
A193872
Even dodecagonal numbers: a(n) = 4*n*(5*n - 2).
Original entry on oeis.org
0, 12, 64, 156, 288, 460, 672, 924, 1216, 1548, 1920, 2332, 2784, 3276, 3808, 4380, 4992, 5644, 6336, 7068, 7840, 8652, 9504, 10396, 11328, 12300, 13312, 14364, 15456, 16588, 17760, 18972, 20224, 21516, 22848, 24220, 25632, 27084, 28576, 30108, 31680, 33292, 34944
Offset: 0
A198392
a(n) = (6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16 + 1.
Original entry on oeis.org
2, 4, 12, 18, 31, 41, 59, 73, 96, 114, 142, 164, 197, 223, 261, 291, 334, 368, 416, 454, 507, 549, 607, 653, 716, 766, 834, 888, 961, 1019, 1097, 1159, 1242, 1308, 1396, 1466, 1559, 1633, 1731, 1809, 1912, 1994, 2102, 2188, 2301, 2391, 2509, 2603, 2726, 2824, 2952
Offset: 0
Cf. sequences related to the triangular spiral:
A022266,
A022267,
A027468,
A038764,
A045946,
A051682,
A062708,
A062725,
A062728,
A062741,
A064225,
A064226,
A081266-
A081268,
A081270-
A081272,
A081275 [incomplete list].
-
[(6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16+1: n in [0..50]];
-
LinearRecurrence[{1,2,-2,-1,1},{2,4,12,18,31},60] (* Harvey P. Dale, Jun 15 2022 *)
-
for(n=0, 50, print1((6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16+1", "));
A226785
If n=0 (mod 7) then a(n)=0, otherwise a(n)=7^(-1) in Z/nZ*.
Original entry on oeis.org
0, 1, 1, 3, 3, 1, 0, 7, 4, 3, 8, 7, 2, 0, 13, 7, 5, 13, 11, 3, 0, 19, 10, 7, 18, 15, 4, 0, 25, 13, 9, 23, 19, 5, 0, 31, 16, 11, 28, 23, 6, 0, 37, 19, 13, 33, 27, 7, 0, 43, 22, 15, 38, 31, 8, 0, 49, 25, 17, 43, 35, 9, 0
Offset: 1
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, -1).
-
A226785 := proc(n)
local x,a,m ;
a := 7 ;
m := 7 ;
if igcd(n,m) > 1 or n =1 then
0;
else
msolve(x*a=1,n) ;
op(%) ;
op(2,%) ;
end if;
end proc: # R. J. Mathar, Jun 28 2013
-
Inv[a_, mod_] := Which[mod == 1,0, GCD[a, mod] > 1, 0, True, Last@Reduce[a*x == 1, x, Modulus -> mod]];Table[Inv[7, n],{n, 1, 122}]
Join[{0},LinearRecurrence[{0,0,0,0,0,0,2,0,0,0,0,0,0,-1},{1,1,3,3,1,0,7,4,3,8,7,2,0,13},70]] (* Harvey P. Dale, Nov 15 2014 *)
Table[If[Mod[n, 7]==0, 0, ModularInverse[7, n]], {n, 1, 100}] (* Jean-François Alcover, Mar 14 2023 *)
-
a(n)=if(n%7,lift(Mod(1,n)/7),0) \\ Charles R Greathouse IV, Jun 18 2013
Comments