cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 52 results. Next

A001509 a(n) = (5*n + 1)*(5*n + 2)*(5*n + 3).

Original entry on oeis.org

6, 336, 1716, 4896, 10626, 19656, 32736, 50616, 74046, 103776, 140556, 185136, 238266, 300696, 373176, 456456, 551286, 658416, 778596, 912576, 1061106, 1224936, 1404816, 1601496, 1815726, 2048256, 2299836, 2571216, 2863146, 3176376, 3511656, 3869736, 4251366
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Crossrefs

Programs

Formula

a(n) = A016861(n) * A016873(n) * A016885(n). - Wesley Ivan Hurt, May 07 2014
G.f.: 6*(1 + 52*x + 68*x^2 + 4*x^3)/(1 - x)^4. - Stefano Spezia, Jan 03 2023
Sum_{n>=0} 1/a(n) = sqrt(2*(25-11*sqrt(5))/5)*Pi/20 + log(phi)/(2*sqrt(5)), where phi is the golden ratio (A001622). - Amiram Eldar, Jan 26 2023
From Elmo R. Oliveira, Sep 07 2025: (Start)
E.g.f.: exp(x)*(6 + 330*x + 525*x^2 + 125*x^3).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

A013828 a(n) = 3^(5*n + 3).

Original entry on oeis.org

27, 6561, 1594323, 387420489, 94143178827, 22876792454961, 5559060566555523, 1350851717672992089, 328256967394537077627, 79766443076872509863361, 19383245667680019896796723, 4710128697246244834921603689
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000244 (3^n), A016885 (5*n+3).

Programs

  • Magma
    [3^(5*n+3): n in [0..15]]; // Vincenzo Librandi, Jul 07 2011
  • Mathematica
    3^(5*Range[0,20]+3) (* or *) NestList[243#&,27,20] (* Harvey P. Dale, Jun 07 2016 *)

Formula

From Philippe Deléham, Nov 30 2008: (Start)
a(n) = 243*a(n-1), n > 0; a(0)=27.
G.f.: 27/(1-243*x).
a(n) = 3*A013827(n) = 9*A013826(n) = A013829(n)/3. (End)

A013836 a(n) = 5^(5*n + 3).

Original entry on oeis.org

125, 390625, 1220703125, 3814697265625, 11920928955078125, 37252902984619140625, 116415321826934814453125, 363797880709171295166015625, 1136868377216160297393798828125, 3552713678800500929355621337890625
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000351 (5^n), A016885 (5*n+3).

Programs

Formula

From Philippe Deléham, Dec 03 2008: (Start)
a(n) = 3125*a(n-1), n > 0; a(0)=125.
G.f.: 125/(1-3125*x). (End)

A013852 a(n) = 9^(5*n + 3).

Original entry on oeis.org

729, 43046721, 2541865828329, 150094635296999121, 8862938119652501095929, 523347633027360537213511521, 30903154382632612361920641803529, 1824800363140073127359051977856583921, 107752636643058178097424660240453423951129
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 9^A016885(n) = A001019(A016885(n)). - Wesley Ivan Hurt, Jan 28 2014

A016887 a(n) = (5*n+3)^3.

Original entry on oeis.org

27, 512, 2197, 5832, 12167, 21952, 35937, 54872, 79507, 110592, 148877, 195112, 250047, 314432, 389017, 474552, 571787, 681472, 804357, 941192, 1092727, 1259712, 1442897, 1643032, 1860867, 2097152, 2352637, 2628072, 2924207, 3241792, 3581577, 3944312
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(5*n+3)^3: n in [0..40]]; // Vincenzo Librandi, May 26 2016
  • Mathematica
    (5 Range[0, 30] + 3)^3 (* or *) LinearRecurrence[{4, -6, 4, -1}, {27, 512, 2197, 5832}, 30] (* Harvey P. Dale, Nov 26 2014 *)
    Table[(5 n + 3)^3, {n, 0, 40}] (* Vincenzo Librandi, May 26 2016 *)

Formula

From Ilya Gutkovskiy, May 26 2016: (Start)
O.g.f.: (27 + 404*x + 311*x^2 + 8*x^3)/(1 - x)^4.
E.g.f.: (27 + 485*x + 600*x^2 + 125*x^3)*exp(x). (End)
a(n) = A000578(A016885(n)). - Michel Marcus, May 26 2016

A017125 Table read by antidiagonals of Fibonacci-type sequences.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 2, 1, 3, 3, 3, 3, 1, 4, 5, 5, 4, 4, 1, 5, 8, 8, 7, 5, 5, 1, 6, 13, 13, 11, 9, 6, 6, 1, 7, 21, 21, 18, 14, 11, 7, 7, 1, 8, 34, 34, 29, 23, 17, 13, 8, 8, 1, 9, 55, 55, 47, 37, 28, 20, 15, 9, 9, 1, 10, 89, 89, 76, 60, 45, 33, 23, 17, 10, 10, 1, 11, 144, 144, 123, 97, 73
Offset: 0

Views

Author

Henry Bottomley, Jul 31 2000

Keywords

Crossrefs

Rows are (essentially) A000045, A000045, A000032, A000285, A022095, A022096, A022097, etc. Columns are (essentially) A001477, A000012, A000027, A005408, A016789, A016885, etc. One of the diagonals is A007502.
Antidiagonal sums are in A019274.

Formula

T(n, k) = T(n, k-1)+T(n, k-2) [with T(n, 0) = n and T(n, 1) = 1] = 2*T(n-1, k)-T(n-2, k) = Fib(k)+n*Fib(k-1) = (s^k*(1+2n/s)-t^k*(1+2n/t))/(2^k*sqrt(5)) where s = (1+sqrt(5))/2 and t = (1-sqrt(5))/2 = 1-s.
G.f. for n-th row: (n+x-nx)/(1-x-x^2).

A093303 a(n) = a(n-1)*(2n-1) + 2n with a(0)=0.

Original entry on oeis.org

0, 2, 10, 56, 400, 3610, 39722, 516400, 7746016, 131682290, 2501963530, 52541234152, 1208448385520, 30211209638026, 815702660226730, 23655377146575200, 733316691543831232, 24199450820946430690, 846980778733125074186
Offset: 0

Views

Author

Emrehan Halici (emrehan(AT)halici.com.tr), Apr 24 2004

Keywords

Comments

Obviously, a(n) is always an even number. a(2) and a(6) are even semiprimes. - Altug Alkan, Dec 07 2015

Crossrefs

Cf. A005843.

Programs

  • Mathematica
    Flatten[{0,Table[n!*Binomial[2*n-1,n]/2^(n-1)*Sum[2^k*k/(k!*Binomial[2*k-1,k]), {k,1,n}],{n,1,20}]}] (* Vaclav Kotesovec, Oct 28 2012 *)
  • PARI
    a(n) = if(n==0, 0, n!*binomial(2*n-1,n)/2^(n-1) * sum(k=1, n, 2^k*k/(k!*binomial(2*k-1,k)))) \\ Altug Alkan, Dec 07 2015
    
  • PARI
    a(n) = if(n==0, 0, a(n-1)*(2*n-1) + 2*n); \\ Altug Alkan, Dec 07 2015

Formula

a(n) = n!*C(2*n-1,n)/2^(n-1) * Sum_{k=1..n} 2^k*k/(k!*C(2*k-1,k)), for n>0. - Vaclav Kotesovec, Oct 28 2012
From Altug Alkan, Dec 07 2015: (Start)
a(A047212(k)) mod 10 = 0.
a(A016861(k)) mod 10 = 2.
a(A016885(k)) mod 10 = 6. (End)
a(n) ~ (sqrt(2) + 2*sqrt(Pi)*exp(1/2)*erf(1/sqrt(2))) * 2^n * n^n / exp(n). - Vaclav Kotesovec, Dec 18 2015

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 24 2004

A187322 a(n) = floor(n/2) + floor(3*n/4).

Original entry on oeis.org

0, 0, 2, 3, 5, 5, 7, 8, 10, 10, 12, 13, 15, 15, 17, 18, 20, 20, 22, 23, 25, 25, 27, 28, 30, 30, 32, 33, 35, 35, 37, 38, 40, 40, 42, 43, 45, 45, 47, 48, 50, 50, 52, 53, 55, 55, 57, 58, 60, 60, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 75, 77, 78, 80, 80, 82, 83, 85, 85, 87, 88, 90, 90, 92, 93, 95, 95, 97
Offset: 0

Views

Author

Clark Kimberling, Mar 08 2011

Keywords

Comments

List of quadruples [5*k, 5*k, 5*k+2, 5*k+3]. - Luce ETIENNE, Aug 14 2017

Crossrefs

Programs

  • Mathematica
    Table[Floor[n/2]+Floor[3n/4], {n,0,120}]
    LinearRecurrence[{1,0,0,1,-1},{0,0,2,3,5},80] (* Harvey P. Dale, Dec 05 2018 *)
  • PARI
    a(n) = n\2 + 3*n\4; \\ Altug Alkan, Aug 14 2017
    
  • PARI
    concat(vector(2), Vec(x^2*(2 + x + 2*x^2) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^100))) \\ Colin Barker, Aug 14 2017
    
  • Python
    def A187322(n): return (n>>1)+(3*n>>2) # Chai Wah Wu, Jan 31 2023

Formula

a(n) = A004526(n) + A057353(n). - Michel Marcus, Aug 14 2017
a(n) = (10*n-5+3*cos(n*Pi)+2*(cos(n*Pi/2)-sin(n*Pi/2)))/8. - Luce ETIENNE, Aug 14 2017
From Colin Barker, Aug 14 2017: (Start)
G.f.: x^2*(2 + x + 2*x^2) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>4.
(End)

A290781 a(n) = 20*n + 15.

Original entry on oeis.org

15, 35, 55, 75, 95, 115, 135, 155, 175, 195, 215, 235, 255, 275, 295, 315, 335, 355, 375, 395, 415, 435, 455, 475, 495, 515, 535, 555, 575, 595, 615, 635, 655, 675, 695, 715, 735, 755, 775, 795, 815, 835, 855, 875, 895, 915, 935, 955, 975, 995, 1015, 1035
Offset: 0

Views

Author

Arkadiusz Wesolowski, Aug 10 2017

Keywords

Comments

Bisection of A017329.
None of the numbers in this sequence is a Fermat pseudoprime to base 2.

Crossrefs

Programs

  • Magma
    [n: n in [15..1035 by 20]];
  • Mathematica
    Range[15, 1035, 20]

Formula

G.f.: 5*(3 + x)/(1 - x)^2.
a(n) = A004767(A016885(n)) = A004767(A004767(n) + n). - Torlach Rush, Oct 10 2019
E.g.f.: 5*exp(x)*(3 + 4*x). - Stefano Spezia, Oct 12 2019
From Elmo R. Oliveira, Apr 12 2025: (Start)
a(n) = 5*A004767(n) = A017329(2*n+1) = A008587(4*n+3).
a(n) = 2*a(n-1) - a(n-2). (End)

A276489 a(n) = 25^(n+1)*Gamma(n+8/5)/Gamma(3/5).

Original entry on oeis.org

15, 600, 39000, 3510000, 403650000, 56511000000, 9324315000000, 1771619850000000, 380898267750000000, 91415584260000000000, 24225129828900000000000, 7025287650381000000000000, 2212965609870015000000000000, 752408307355805100000000000000, 274629032184868861500000000000000
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 05 2016

Keywords

Examples

			a(0) = (1+2+3+4+5) = 15;
a(1) = (1+2+3+4+5)*(6+7+8+9+10) = 600;
a(2) = (1+2+3+4+5)*(6+7+8+9+10)*(11+12+13+14+15) = 39000, etc.
		

Crossrefs

Programs

  • Mathematica
    FullSimplify[Table[25^(n + 1) (Gamma[n + 8/5]/Gamma[3/5]), {n, 0, 14}]]
  • PARI
    a(n) = prod(k=0, n, 5*(5*k + 3)); \\ Michel Marcus, Sep 06 2016

Formula

E.g.f.: 15/(1 - 25*x)^(8/5).
D-finite with recurrence: a(n) = 5*(5*n + 3)*a(n - 1), a(0)=15.
a(n) = Product_{k=0..n} 5*(5*k + 3).
a(n) = Product_{k=0..n} 5*A016885(k).
a(n) ~ sqrt(2*Pi)*25^(n+1)*n^(n+11/10)/(Gamma(3/5)*exp(n)).
Sum_{n>=0} 1/a(n) = exp(1/25)*(Gamma(3/5) - Gamma(3/5, 1/25))/5^(4/5)
= 0.06835926175445652444604..., where Gamma(a, x) is the incomplete Gamma function.
Previous Showing 41-50 of 52 results. Next