cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A017095 a(n) = (8*n + 2)^7.

Original entry on oeis.org

128, 10000000, 612220032, 8031810176, 52523350144, 230539333248, 781250000000, 2207984167552, 5455160701056, 12151280273024, 24928547056768, 47829690000000, 86812553324672, 150363025899136, 250226879128704, 402271083010688, 627485170000000, 953133216331392, 1414067010444416
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A013665, A016819, A017089 (8n+2), A001015 (n^7).

Programs

Formula

From Amiram Eldar, Apr 24 2023: (Start)
a(n) = A017089(n)^7.
a(n) = 2^7*A016819(n).
Sum_{n>=0} 1/a(n) = 61*Pi^7/47185920 + 127*zeta(7)/32768. (End)

A017097 a(n) = (8*n + 2)^9.

Original entry on oeis.org

512, 1000000000, 198359290368, 5429503678976, 60716992766464, 406671383849472, 1953125000000000, 7427658739644928, 23762680013799936, 66540410775079424, 167619550409708032, 387420489000000000, 833747762130149888, 1689478959002692096, 3251948521156637184, 5987402799531080192
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(0)=512, a(1)=1000000000, a(2)=198359290368, a(3)=5429503678976, a(4)=60716992766464, a(5)=406671383849472, a(6)=1953125000000000, a(7)=7427658739644928, a(8)=23762680013799936, a(9)=66540410775079424, a(n)=10*a(n-1)-45*a(n-2)+120*a(n-3)-210*a(n-4)+252*a(n-5)- 210*a(n-6)+ 120*a(n-7)-45*a(n-8)+10*a(n-9)-a(n-10). - Harvey P. Dale, Dec 15 2011
From Amiram Eldar, Apr 24 2023: (Start)
a(n) = A017089(n)^9.
a(n) = 2^9*A016821(n).
Sum_{n>=0} 1/a(n) = 277*Pi^9/8455716864 + 511*zeta(9)/524288. (End)

A017099 a(n) = (8*n + 2)^11.

Original entry on oeis.org

2048, 100000000000, 64268410079232, 3670344486987776, 70188843638032384, 717368321110468608, 4882812500000000000, 24986644000165537792, 103510234140112521216, 364375289404334925824, 1127073856954876807168, 3138105960900000000000, 8007313507497959524352
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Apr 24 2023: (Start)
a(n) = A017089(n)^11.
a(n) = 2^11*A016823(n).
Sum_{n>=0} 1/a(n) = 50521*Pi^11/60881161420800 + 2047*zeta(11)/8388608. (End)
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12). - Wesley Ivan Hurt, Jan 20 2024

A173773 a(3*n) = 8*n+2, a(3*n+1) = 2*n+1, a(3*n+2) = 8*n+6.

Original entry on oeis.org

2, 1, 6, 10, 3, 14, 18, 5, 22, 26, 7, 30, 34, 9, 38, 42, 11, 46, 50, 13, 54, 58, 15, 62, 66, 17, 70, 74, 19, 78, 82, 21, 86, 90, 23, 94, 98, 25, 102, 106, 27, 110, 114, 29, 118, 122, 31, 126, 130, 33, 134, 138, 35, 142, 146, 37, 150, 154, 39, 158, 162, 41, 166
Offset: 0

Views

Author

Paul Curtz, Nov 26 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sequence @@ {8*n+2, 2*n+1,  8*n+6}, {n, 0, 20}] (* Amiram Eldar, Oct 08 2023 *)

Formula

G.f.: (1+x)*(2-x+7*x^2-x^3+2*x^4)/(1-x^3)^2.
Sum_{n>=0} (-1)^(n+1)/a(n) = (2-sqrt(2))*Pi/8. - Amiram Eldar, Oct 08 2023

A258415 Array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = (2 + 2^(n-1)*(6*k - 3 + 2*(-1)^n))/3, n,k >= 1.

Original entry on oeis.org

1, 4, 3, 2, 8, 5, 14, 10, 12, 7, 6, 30, 18, 16, 9, 54, 38, 46, 26, 20, 11, 22, 118, 70, 62, 34, 24, 13, 214, 150, 182, 102, 78, 42, 28, 15, 86, 470, 278, 246, 134, 94, 50, 32, 17, 854, 598, 726, 406, 310, 166, 110, 58, 36, 19
Offset: 1

Views

Author

L. Edson Jeffery, May 29 2015

Keywords

Comments

The sequence is a permutation of the natural numbers.
Theorem: Let v(y) denote the 2-adic valuation of y. For x an odd natural number, let F(x) = (3*x+1)/2^v(3*x+1) (see A075677). Row n of A is the set of all natural numbers m such that v(1+F(4*(2*m-1)-3)) = n.

Examples

			Array begins:
.      1     3     5     7     9    11    13    15    17     19
.      4     8    12    16    20    24    28    32    36     40
.      2    10    18    26    34    42    50    58    66     74
.     14    30    46    62    78    94   110   126   142    158
.      6    38    70   102   134   166   198   230   262    294
.     54   118   182   246   310   374   438   502   566    630
.     22   150   278   406   534   662   790   918  1046   1174
.    214   470   726   982  1238  1494  1750  2006  2262   2518
.     86   598  1110  1622  2134  2646  3158  3670  4182   4694
.    854  1878  2902  3926  4950  5974  6998  8022  9046  10070
		

Crossrefs

Cf. A005408, A008586, A017089 (rows 1-3).

Programs

  • Mathematica
    (* Array: *)
    Grid[Table[(2 + 2^(n - 1)*(6*k - 3 + 2*(-1)^n))/3, {n, 10}, {k, 10}]]
    (* Array antidiagonals flattened: *)
    Flatten[Table[(2 + 2^(n - k)*(6*k - 3 + 2*(-1)^(n - k + 1)))/3, {n, 10}, {k, n}]]

Formula

A(n,k) = (1 + A257499(n,k))/2.

A281813 a(0) = 3, a(n) = 8*n + 4 for n > 0.

Original entry on oeis.org

3, 12, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92, 100, 108, 116, 124, 132, 140, 148, 156, 164, 172, 180, 188, 196, 204, 212, 220, 228, 236, 244, 252, 260, 268, 276, 284, 292, 300, 308, 316, 324, 332, 340, 348, 356, 364, 372, 380, 388, 396, 404
Offset: 0

Views

Author

Rayan Ivaturi, Jan 30 2017

Keywords

Comments

Consider a 1 X S rectangle on an infinite grid and surround it successively with the minimum number of 1 X 1 tiles: the initial S on step 0, 2S + 6 on step 1, 2S + 14 on step 2, and so on. This sequence is case S = 3. See Ivaturi link for a connection to sieving for primes.

Crossrefs

Cf. A017113.
Other 'ripple sequences': A022144 (s=1), A017089 (s=2).

Programs

Formula

G.f.: (3 + 6*x - x^2)/(1 - x)^2.
a(n) = A017113(n) for n>0, a(0) = 3.
a(n) = A086570(n+1) for n>=1. - R. J. Mathar, Jun 21 2025

Extensions

Entry revised by Editors of OEIS, Feb 09 2017

A047473 Numbers that are congruent to {2, 3} mod 8.

Original entry on oeis.org

2, 3, 10, 11, 18, 19, 26, 27, 34, 35, 42, 43, 50, 51, 58, 59, 66, 67, 74, 75, 82, 83, 90, 91, 98, 99, 106, 107, 114, 115, 122, 123, 130, 131, 138, 139, 146, 147, 154, 155, 162, 163, 170, 171, 178, 179, 186, 187, 194, 195, 202, 203, 210, 211, 218, 219, 226, 227, 234
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that k and k+2 have the same digital binary sum. - Benoit Cloitre, Dec 01 2002
Also, numbers k such that k*(3*k + 1)/8 + 1/4 is a nonnegative integer. - Bruno Berselli, Feb 14 2017

Crossrefs

Programs

  • Mathematica
    Flatten[# + {2,3} &/@ (8 Range[0, 30])] (* or *) LinearRecurrence[{1, 1, -1}, {2, 3, 10}, 60] (* Harvey P. Dale, Sep 28 2012 *)

Formula

a(n) = 8*n - a(n-1) - 11 for n>1, a(1)=2. - Vincenzo Librandi, Aug 06 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 4*n - 7/2 - 3*(-1)^n/2.
G.f.: x*(2 + x + 5*x^2)/((1 + x)*(1 - x)^2). (End)
a(1)=2, a(2)=3, a(3)=10; for n>3, a(n) = a(n-1) + a(n-2) - a(n-3). - Harvey P. Dale, Sep 28 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = (2-sqrt(2))*Pi/16 + sqrt(2)*log(sqrt(2)+1)/8 - log(2)/8. - Amiram Eldar, Dec 18 2021

Extensions

More terms from Vincenzo Librandi, Aug 06 2010
Previous Showing 21-27 of 27 results.