A224829
Numbers m, such that there is no solution m = x + y + 3*z, with triangular numbers x, y, z.
Original entry on oeis.org
8, 17, 26, 35, 44, 53, 62, 71, 77, 80, 89, 98, 107, 116, 125, 134, 143, 152, 158, 161, 170, 179, 188, 197, 206, 215, 224, 233, 239, 242, 251, 260, 269, 278, 287, 296, 305, 314, 320, 323, 332, 341, 350, 359, 368, 377, 386, 395, 401, 404, 413, 422, 431, 440
Offset: 1
A350515
a(n) = (n-1)/3 if n mod 3 = 1; a(n) = n/2 if n mod 6 = 0 or n mod 6 = 2; a(n) = (3n+1)/2 if n mod 6 = 3 or n mod 6 = 5.
Original entry on oeis.org
0, 0, 1, 5, 1, 8, 3, 2, 4, 14, 3, 17, 6, 4, 7, 23, 5, 26, 9, 6, 10, 32, 7, 35, 12, 8, 13, 41, 9, 44, 15, 10, 16, 50, 11, 53, 18, 12, 19, 59, 13, 62, 21, 14, 22, 68, 15, 71, 24, 16, 25, 77, 17, 80, 27, 18, 28, 86, 19, 89, 30, 20, 31, 95, 21, 98, 33, 22, 34, 104
Offset: 0
From _Omar E. Pol_, Jan 02 2022: (Start)
Written as a rectangular array with six columns read by rows the sequence begins:
0, 0, 1, 5, 1, 8;
3, 2, 4, 14, 3, 17;
6, 4, 7, 23, 5, 26;
9, 6, 10, 32, 7, 35;
12, 8, 13, 41, 9, 44;
15, 10, 16, 50, 11, 53;
18, 12, 19, 59, 13, 62;
21, 14, 22, 68, 15, 71;
24, 16, 25, 77, 17, 80;
27, 18, 28, 86, 19, 89;
30, 20, 31, 95, 21, 98;
...
(End)
- H. M. Farkas, "Variants of the 3N+1 Conjecture and Multiplicative Semigroups", in Entov, Pinchover and Sageev, Geometry, Spectral Theory, Groups, and Dynamics, Contemporary Mathematics, vol. 387, American Mathematical Society, 2005, p. 121.
- Emre Yolcu, Scott Aaronson and Marijn J. H. Heule, An Automated Approach to the Collatz Conjecture, arXiv:2105.14697 [cs.LO], 2021, pp. 21-25.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,2,0,0,0,0,0,-1).
-
nterms=100;Table[If[Mod[n,3]==1,(n-1)/3,If[Mod[n,6]==0||Mod[n,6]==2,n/2,(3n+1)/2]],{n,0,nterms-1}]
(* Second program *)
nterms=100;LinearRecurrence[{0,0,0,0,0,2,0,0,0,0,0,-1},{0,0,1,5,1,8,3,2,4,14,3,17},nterms]
-
def a(n):
r = n%6
if r == 1 or r == 4: return (n-1)//3
if r == 0 or r == 2: return n//2
if r == 3 or r == 5: return (3*n+1)//2
print([a(n) for n in range(70)]) # Michael S. Branicky, Jan 02 2022
A304504
a(n) = 3*(3*n+1)*(9*n+8)/2.
Original entry on oeis.org
12, 102, 273, 525, 858, 1272, 1767, 2343, 3000, 3738, 4557, 5457, 6438, 7500, 8643, 9867, 11172, 12558, 14025, 15573, 17202, 18912, 20703, 22575, 24528, 26562, 28677, 30873, 33150, 35508, 37947, 40467, 43068, 45750, 48513, 51357, 54282, 57288, 60375, 63543, 66792
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian Journal of Mathematical Chemistry, Vol. 6, No. 2, 2015, pp. 93-102.
- T. Doslic and M. Saheli, Augmented eccentric connectivity index of single-defect nanocones, Journal of Mathematical Nanoscience, Vol. 1, No. 1, 2011, pp. 25-31.
- A. Khaksar, M. Ghorbani, and H. R. Maimani, On atom bond connectivity and GA indices of nanocones, Optoelectronics and Advanced Materials - Rapid Communications, Vol. 4, No. 11, 2010, pp. 1868-1870.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
seq((1/2)*(3*(9*n+8))*(3*n+1), n = 0 .. 40);
-
Vec(3*(4 + 22*x + x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018
A304506
a(n) = 2*(3*n+1)*(9*n+8).
Original entry on oeis.org
16, 136, 364, 700, 1144, 1696, 2356, 3124, 4000, 4984, 6076, 7276, 8584, 10000, 11524, 13156, 14896, 16744, 18700, 20764, 22936, 25216, 27604, 30100, 32704, 35416, 38236, 41164, 44200, 47344, 50596, 53956, 57424, 61000, 64684, 68476, 72376, 76384, 80500, 84724, 89056
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian Journal of Mathematical Chemistry, Vol. 6, No. 2, 2015, pp. 93-102.
- T. Doslic and M. Saheli, Augmented eccentric connectivity index of single-defect nanocones, Journal of Mathematical Nanoscience, Vol. 1, No. 1, 2011, pp. 25-31.
- A. Khaksar, M. Ghorbani, and H. R. Maimani, On atom bond connectivity and GA indices of nanocones, Optoelectronics and Advanced Materials - Rapid Communications, Vol. 4, No. 11, 2010, pp. 1868-1870.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
List([0..50],n->2*(3*n+1)*(9*n+8)); # Muniru A Asiru, May 14 2018
-
seq((2*(9*n+8))*(3*n+1), n = 0 .. 40);
-
Table[2(3n+1)(9n+8),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{16,136,364},50] (* Harvey P. Dale, Aug 15 2022 *)
-
a(n) = 2*(3*n+1)*(9*n+8); \\ Altug Alkan, May 14 2018
-
Vec(4*(4 + 22*x + x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018
A304508
a(n) = 5*(3*n+1)*(9*n+8)/2 (n>=0).
Original entry on oeis.org
20, 170, 455, 875, 1430, 2120, 2945, 3905, 5000, 6230, 7595, 9095, 10730, 12500, 14405, 16445, 18620, 20930, 23375, 25955, 28670, 31520, 34505, 37625, 40880, 44270, 47795, 51455, 55250, 59180, 63245, 67445, 71780, 76250, 80855, 85595, 90470, 95480, 100625, 105905, 111320
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Emeric Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, Vol. 6, No. 2, 2015, pp. 93-102.
- T. Doslic and M. Saheli, Augmented eccentric connectivity index of single-defect nanocones, J. of Mathematical Nanoscience, Vol. 1, No. 1, 2011, pp. 25-31.
- A. Khaksar, M. Ghorbani, and H. R. Maimani, On atom bond connectivity and GA indices of nanocones, Optoelectronics and Advanced Materials - Rapid Communications, Vol. 4, No. 11, 2010, pp. 1868-1870.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
seq((1/2)*(5*(3*n+1))*(9*n+8), n = 0 .. 40);
-
Array[5 (3 # + 1) (9 # + 8)/2 &, 41, 0] (* or *)
LinearRecurrence[{3, -3, 1}, {20, 170, 455}, 41] (* or *)
CoefficientList[Series[5 (4 + 22 x + x^2)/(1 - x)^3, {x, 0, 40}], x] (* Michael De Vlieger, May 14 2018 *)
-
a(n) = 5*(3*n+1)*(9*n+8)/2; \\ Altug Alkan, May 14 2018
-
Vec(5*(4 + 22*x + x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018
A350522
a(n) = 18*n + 16.
Original entry on oeis.org
16, 34, 52, 70, 88, 106, 124, 142, 160, 178, 196, 214, 232, 250, 268, 286, 304, 322, 340, 358, 376, 394, 412, 430, 448, 466, 484, 502, 520, 538, 556, 574, 592, 610, 628, 646, 664, 682, 700, 718, 736, 754, 772, 790, 808, 826, 844, 862, 880, 898, 916, 934, 952, 970
Offset: 0
-
List([0..53], n-> 18*n+16)
-
[18*n+16: n in [0..53]];
-
seq(18*n+16, n=0..53);
-
Table[18n+16, {n, 0, 53}]
-
makelist(18*n+16, n, 0, 53);
-
a(n)=18*n+16
-
[18*n+16 for n in range(53)]
A361692
a(n) = 17*n - 1.
Original entry on oeis.org
16, 33, 50, 67, 84, 101, 118, 135, 152, 169, 186, 203, 220, 237, 254, 271, 288, 305, 322, 339, 356, 373, 390, 407, 424, 441, 458, 475, 492, 509, 526, 543, 560, 577, 594, 611, 628, 645, 662, 679, 696, 713, 730, 747, 764, 781, 798, 815, 832, 849, 866, 883, 900, 917, 934, 951, 968, 985, 1002, 1019
Offset: 1
A001534
a(n) = (9*n+1)*(9*n+8).
Original entry on oeis.org
8, 170, 494, 980, 1628, 2438, 3410, 4544, 5840, 7298, 8918, 10700, 12644, 14750, 17018, 19448, 22040, 24794, 27710, 30788, 34028, 37430, 40994, 44720, 48608, 52658, 56870, 61244, 65780, 70478, 75338, 80360, 85544, 90890, 96398, 102068, 107900, 113894, 120050
Offset: 0
-
f[n_]:=Module[{n9=9n},(n9+1)(n9+8)];Array[f,40,0] (* or *) LinearRecurrence[ {3,-3,1},{8,170,494},50] (* Harvey P. Dale, Aug 20 2011 *)
-
a(n)=(9*n+1)*(9*n+8) \\ Charles R Greathouse IV, Jun 17 2017
A017263
a(n) = (9*n + 8)^7.
Original entry on oeis.org
2097152, 410338673, 8031810176, 64339296875, 319277809664, 1174711139837, 3521614606208, 9095120158391, 20971520000000, 44231334895529, 86812553324672, 160578147647843, 282621973446656, 476837158203125, 775771085481344, 1222791080775407, 1874584905187328
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (8, -28, 56, -70, 56, -28, 8, -1).
-
[(9*n+8)^7: n in [0..20]]; // Vincenzo Librandi, Jul 28 2011
-
(9*Range[0,20]+8)^7 (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{2097152,410338673,8031810176,64339296875,319277809664,1174711139837,3521614606208,9095120158391},30] (* Harvey P. Dale, Apr 06 2013 *)
A017267
a(n) = (9*n + 8)^11.
Original entry on oeis.org
8589934592, 34271896307633, 3670344486987776, 96549157373046875, 1196683881290399744, 9269035929372191597, 52036560683837093888, 231122292121701565271, 858993459200000000000, 2775173073766990340489
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (12, -66, 220, -495, 792, -924, 792, -495, 220, -66, 12, -1).
-
[(9*n+8)^11: n in [0..10]]; // Vincenzo Librandi, Jul 28 2011
-
(9*Range[0,30]+8)^11 (* or *) LinearRecurrence[ {12,-66,220,-495,792,-924,792,-495,220,-66,12,-1},{8589934592,34271896307633,3670344486987776,96549157373046875,1196683881290399744,9269035929372191597,52036560683837093888,231122292121701565271,858993459200000000000,2775173073766990340489,8007313507497959524352,21048519522998348950643},30] (* Harvey P. Dale, Oct 21 2013 *)
Comments