cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A224829 Numbers m, such that there is no solution m = x + y + 3*z, with triangular numbers x, y, z.

Original entry on oeis.org

8, 17, 26, 35, 44, 53, 62, 71, 77, 80, 89, 98, 107, 116, 125, 134, 143, 152, 158, 161, 170, 179, 188, 197, 206, 215, 224, 233, 239, 242, 251, 260, 269, 278, 287, 296, 305, 314, 320, 323, 332, 341, 350, 359, 368, 377, 386, 395, 401, 404, 413, 422, 431, 440
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2013

Keywords

Comments

A224823(a(n)) = 0;
terms not of the form 9*k+8: 77,158,239,320,401,482,563,644,698,... .

Crossrefs

Cf. A017257 (subsequence), A000217.

Programs

  • Haskell
    a224829 n = a224829_list !! n
    a224829_list = filter ((== 0) . a224823) [0..]

A350515 a(n) = (n-1)/3 if n mod 3 = 1; a(n) = n/2 if n mod 6 = 0 or n mod 6 = 2; a(n) = (3n+1)/2 if n mod 6 = 3 or n mod 6 = 5.

Original entry on oeis.org

0, 0, 1, 5, 1, 8, 3, 2, 4, 14, 3, 17, 6, 4, 7, 23, 5, 26, 9, 6, 10, 32, 7, 35, 12, 8, 13, 41, 9, 44, 15, 10, 16, 50, 11, 53, 18, 12, 19, 59, 13, 62, 21, 14, 22, 68, 15, 71, 24, 16, 25, 77, 17, 80, 27, 18, 28, 86, 19, 89, 30, 20, 31, 95, 21, 98, 33, 22, 34, 104
Offset: 0

Views

Author

Paolo Xausa, Jan 02 2022

Keywords

Comments

This is a variant of the Farkas map (A349407).
Yolcu, Aaronson and Heule prove that the trajectory of the iterates of the map starting from any nonnegative integer always reaches 0.
If displayed as a rectangular array with six columns, the columns are A008585, A005843, A016777, A017221, A005408, A017257 (see example). - Omar E. Pol, Jan 02 2022

Examples

			From _Omar E. Pol_, Jan 02 2022: (Start)
Written as a rectangular array with six columns read by rows the sequence begins:
   0,  0,  1,  5,  1,  8;
   3,  2,  4, 14,  3, 17;
   6,  4,  7, 23,  5, 26;
   9,  6, 10, 32,  7, 35;
  12,  8, 13, 41,  9, 44;
  15, 10, 16, 50, 11, 53;
  18, 12, 19, 59, 13, 62;
  21, 14, 22, 68, 15, 71;
  24, 16, 25, 77, 17, 80;
  27, 18, 28, 86, 19, 89;
  30, 20, 31, 95, 21, 98;
...
(End)
		

Crossrefs

Programs

  • Mathematica
    nterms=100;Table[If[Mod[n,3]==1,(n-1)/3,If[Mod[n,6]==0||Mod[n,6]==2,n/2,(3n+1)/2]],{n,0,nterms-1}]
    (* Second program *)
    nterms=100;LinearRecurrence[{0,0,0,0,0,2,0,0,0,0,0,-1},{0,0,1,5,1,8,3,2,4,14,3,17},nterms]
  • Python
    def a(n):
        r = n%6
        if r == 1 or r == 4: return (n-1)//3
        if r == 0 or r == 2: return n//2
        if r == 3 or r == 5: return (3*n+1)//2
    print([a(n) for n in range(70)]) # Michael S. Branicky, Jan 02 2022

Formula

a(n) = (A349407(n+1)-1)/2.
a(n) = 2*a(n-6)-a(n-12). - Wesley Ivan Hurt, Jan 03 2022

A304504 a(n) = 3*(3*n+1)*(9*n+8)/2.

Original entry on oeis.org

12, 102, 273, 525, 858, 1272, 1767, 2343, 3000, 3738, 4557, 5457, 6438, 7500, 8643, 9867, 11172, 12558, 14025, 15573, 17202, 18912, 20703, 22575, 24528, 26562, 28677, 30873, 33150, 35508, 37947, 40467, 43068, 45750, 48513, 51357, 54282, 57288, 60375, 63543, 66792
Offset: 0

Views

Author

Emeric Deutsch, May 13 2018

Keywords

Comments

The second Zagreb index of the single-defect 3-gonal nanocone CNC(3,n) (see definition in the Doslic et al. reference, p. 27).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of CNC(3,n) is M(CNC(3,n); x,y) = 3*x^2*y^2 + 6*n*x^2*y^3 + 3*n*(3*n+1)*x^3*y^3/2.
More generally, the M-polynomial of CNC(k,n) is M(CNC(k,n); x,y) = k*x^2*y^2 + 2*k*n*x^2*y^3 + k*n*(3*n + 1)*x^3*y^3/2.
8*a(n) + 25 is a square. - Bruno Berselli, May 14 2018

Crossrefs

Programs

  • Maple
    seq((1/2)*(3*(9*n+8))*(3*n+1), n = 0 .. 40);
  • PARI
    Vec(3*(4 + 22*x + x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018

Formula

From Colin Barker, May 14 2018: (Start)
G.f.: 3*(4 + 22*x + x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: 3*exp(x)*(8 + 60*x + 27*x^2)/2.
a(n) = A017197(n)*A017257(n)/2. (End)

A304506 a(n) = 2*(3*n+1)*(9*n+8).

Original entry on oeis.org

16, 136, 364, 700, 1144, 1696, 2356, 3124, 4000, 4984, 6076, 7276, 8584, 10000, 11524, 13156, 14896, 16744, 18700, 20764, 22936, 25216, 27604, 30100, 32704, 35416, 38236, 41164, 44200, 47344, 50596, 53956, 57424, 61000, 64684, 68476, 72376, 76384, 80500, 84724, 89056
Offset: 0

Views

Author

Emeric Deutsch, May 14 2018

Keywords

Comments

a(n) is the second Zagreb index of the single-defect 4-gonal nanocone CNC(4,n) (see definition in the Doslic et al. reference, p. 27).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of CNC(4,n) is M(CNC(4,n);x,y) = 4*x^2*y^2 + 8*n*x^2*y^3 + 2*n*(3*n+1)*x^3*y^3.
More generally, the M-polynomial of CNC(k,n) is M(CNC(k,n); x,y) = k*x^2*y^2 + 2*k*n*x^2*y^3 + k*n*(3*n + 1)*x^3*y^3/2.
6*a(n) + 25 is a square. - Bruno Berselli, May 14 2018

Crossrefs

Programs

  • GAP
    List([0..50],n->2*(3*n+1)*(9*n+8)); # Muniru A Asiru, May 14 2018
    
  • Maple
    seq((2*(9*n+8))*(3*n+1), n = 0 .. 40);
  • Mathematica
    Table[2(3n+1)(9n+8),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{16,136,364},50] (* Harvey P. Dale, Aug 15 2022 *)
  • PARI
    a(n) = 2*(3*n+1)*(9*n+8); \\ Altug Alkan, May 14 2018
    
  • PARI
    Vec(4*(4 + 22*x + x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018

Formula

From Colin Barker, May 14 2018: (Start)
G.f.: 4*(4 + 22*x + x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: 2*exp(x)*(8 + 60*x + 27*x^2).
a(n) = A016933(n)*A017257(n). (End)

A304508 a(n) = 5*(3*n+1)*(9*n+8)/2 (n>=0).

Original entry on oeis.org

20, 170, 455, 875, 1430, 2120, 2945, 3905, 5000, 6230, 7595, 9095, 10730, 12500, 14405, 16445, 18620, 20930, 23375, 25955, 28670, 31520, 34505, 37625, 40880, 44270, 47795, 51455, 55250, 59180, 63245, 67445, 71780, 76250, 80855, 85595, 90470, 95480, 100625, 105905, 111320
Offset: 0

Views

Author

Emeric Deutsch, May 14 2018

Keywords

Comments

The second Zagreb index of the single-defect 5-gonal nanocone CNC(5,n) (see definition in the Doslic et al. reference, p. 27).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of CNC(5,n) is M(CNC(5,n); x,y) = 5*x^2*y^2 + 10*n*x^2*y^3 + 5*n*(3*n+1)*x^3*y^3/2.
More generally, the M-polynomial of CNC(k,n) is M(CNC(k,n); x,y) = k*x^2*y^2 + 2*k*n*x^2*y^3 + k*n*(3*n + 1)*x^3*y^3/2.

Crossrefs

Programs

  • Maple
    seq((1/2)*(5*(3*n+1))*(9*n+8), n = 0 .. 40);
  • Mathematica
    Array[5 (3 # + 1) (9 # + 8)/2 &, 41, 0] (* or *)
    LinearRecurrence[{3, -3, 1}, {20, 170, 455}, 41] (* or *)
    CoefficientList[Series[5 (4 + 22 x + x^2)/(1 - x)^3, {x, 0, 40}], x] (* Michael De Vlieger, May 14 2018 *)
  • PARI
    a(n) = 5*(3*n+1)*(9*n+8)/2; \\ Altug Alkan, May 14 2018
    
  • PARI
    Vec(5*(4 + 22*x + x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018

Formula

From Colin Barker, May 14 2018: (Start)
G.f.: 5*(4 + 22*x + x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: 5*exp(x)*(8 + 60*x + 27*x^2)/2.
a(n) = 5*A016777(n)*A017257(n)/2. (End)

A350522 a(n) = 18*n + 16.

Original entry on oeis.org

16, 34, 52, 70, 88, 106, 124, 142, 160, 178, 196, 214, 232, 250, 268, 286, 304, 322, 340, 358, 376, 394, 412, 430, 448, 466, 484, 502, 520, 538, 556, 574, 592, 610, 628, 646, 664, 682, 700, 718, 736, 754, 772, 790, 808, 826, 844, 862, 880, 898, 916, 934, 952, 970
Offset: 0

Views

Author

Omar E. Pol, Jan 03 2022

Keywords

Comments

Sixth column of A006370 (the Collatz or 3x+1 map) when it is interpreted as a rectangular array with six columns read by rows.

Crossrefs

Programs

  • GAP
    List([0..53], n-> 18*n+16)
    
  • Magma
    [18*n+16: n in [0..53]];
    
  • Maple
    seq(18*n+16, n=0..53);
  • Mathematica
    Table[18n+16, {n, 0, 53}]
  • Maxima
    makelist(18*n+16, n, 0, 53);
    
  • PARI
    a(n)=18*n+16
    
  • Python
    [18*n+16 for n in range(53)]

Formula

a(n) = A239129(n+1) - 1.
From Stefano Spezia, Jan 04 2022: (Start)
O.g.f.: 2*(8 + x)/(1 - x)^2.
E.g.f.: 2*exp(x)*(8 + 9*x).
a(n) = 2*a(n-1) - a(n-2) for n > 1. (End)
a(n) = 3*A008588(n+1) - 2. - Leo Tavares, Sep 14 2022
From Elmo R. Oliveira, Apr 12 2024: (Start)
a(n) = 2*A017257(n) = A006370(A016969(n)).
a(n) = 2*(A062728(n+1) - A062728(n)). (End)

A361692 a(n) = 17*n - 1.

Original entry on oeis.org

16, 33, 50, 67, 84, 101, 118, 135, 152, 169, 186, 203, 220, 237, 254, 271, 288, 305, 322, 339, 356, 373, 390, 407, 424, 441, 458, 475, 492, 509, 526, 543, 560, 577, 594, 611, 628, 645, 662, 679, 696, 713, 730, 747, 764, 781, 798, 815, 832, 849, 866, 883, 900, 917, 934, 951, 968, 985, 1002, 1019
Offset: 1

Views

Author

Leo Tavares, Mar 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    17*Range[100] - 1 (* Paolo Xausa, Aug 30 2024 *)
    LinearRecurrence[{2,-1},{16,33},90] (* Harvey P. Dale, Jun 03 2025 *)

Formula

a(n) = 17*n - 1 = A008599(n) - 1.
a(n) = 2*A008590(n) + n - 1.
a(n) = A008590(n) + A017257(n-1).
From Elmo R. Oliveira, Apr 03 2025: (Start)
G.f.: x*(16 + x)/(x - 1)^2.
E.g.f.: exp(x)*(17*x - 1) + 1.
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

A001534 a(n) = (9*n+1)*(9*n+8).

Original entry on oeis.org

8, 170, 494, 980, 1628, 2438, 3410, 4544, 5840, 7298, 8918, 10700, 12644, 14750, 17018, 19448, 22040, 24794, 27710, 30788, 34028, 37430, 40994, 44720, 48608, 52658, 56870, 61244, 65780, 70478, 75338, 80360, 85544, 90890, 96398, 102068, 107900, 113894, 120050
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Module[{n9=9n},(n9+1)(n9+8)];Array[f,40,0] (* or *) LinearRecurrence[ {3,-3,1},{8,170,494},50] (* Harvey P. Dale, Aug 20 2011 *)
  • PARI
    a(n)=(9*n+1)*(9*n+8) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 162*n + a(n-1) with a(0)=8. - Vincenzo Librandi, Nov 12 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0)=8, a(1)=170, a(2)=494. - Harvey P. Dale, Aug 20 2011
G.f.: -((2*(x*(4*x+73)+4))/(x-1)^3). - Harvey P. Dale, Aug 20 2011
Sum_{n>=0} 1/a(n) = (Psi(8/9)-Psi(1/9))/63 = 0.13700722.. - R. J. Mathar, May 30 2022
Sum_{n>=0} 1/a(n) = cot(Pi/9)*Pi/63. - Amiram Eldar, Sep 10 2022
From Amiram Eldar, Feb 19 2023: (Start)
a(n) = A017173(n)*A017257(n).
Product_{n>=0} (1 - 1/a(n)) = cosec(Pi/9)*cos(sqrt(53)*Pi/18).
Product_{n>=0} (1 + 1/a(n)) = cosec(Pi/9)*cos(sqrt(5)*Pi/6). (End)
E.g.f.: exp(x)*(8 + 81*x*(2 + x)). - Elmo R. Oliveira, Oct 18 2024

A017263 a(n) = (9*n + 8)^7.

Original entry on oeis.org

2097152, 410338673, 8031810176, 64339296875, 319277809664, 1174711139837, 3521614606208, 9095120158391, 20971520000000, 44231334895529, 86812553324672, 160578147647843, 282621973446656, 476837158203125, 775771085481344, 1222791080775407, 1874584905187328
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A001015 (n^7), A017257 (9*n+8).

Programs

  • Magma
    [(9*n+8)^7: n in [0..20]]; // Vincenzo Librandi, Jul 28 2011
  • Mathematica
    (9*Range[0,20]+8)^7 (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{2097152,410338673,8031810176,64339296875,319277809664,1174711139837,3521614606208,9095120158391},30] (* Harvey P. Dale, Apr 06 2013 *)

Formula

a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8); a(0)=2097152, a(1)=410338673, a(2)=8031810176, a(3)=64339296875, a(4)=319277809664, a(5)=1174711139837, a(6)=3521614606208, a(7)=9095120158391. - Harvey P. Dale, Apr 06 2013

Extensions

More terms from Harvey P. Dale, Apr 06 2013

A017267 a(n) = (9*n + 8)^11.

Original entry on oeis.org

8589934592, 34271896307633, 3670344486987776, 96549157373046875, 1196683881290399744, 9269035929372191597, 52036560683837093888, 231122292121701565271, 858993459200000000000, 2775173073766990340489
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A008455 (n^11), A017257 (9*n+8).

Programs

  • Magma
    [(9*n+8)^11: n in [0..10]]; // Vincenzo Librandi, Jul 28 2011
  • Mathematica
    (9*Range[0,30]+8)^11 (* or *) LinearRecurrence[ {12,-66,220,-495,792,-924,792,-495,220,-66,12,-1},{8589934592,34271896307633,3670344486987776,96549157373046875,1196683881290399744,9269035929372191597,52036560683837093888,231122292121701565271,858993459200000000000,2775173073766990340489,8007313507497959524352,21048519522998348950643},30] (* Harvey P. Dale, Oct 21 2013 *)

Formula

a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12); a(0)=8589934592, a(1)=34271896307633, a(2)=3670344486987776, a(3)=96549157373046875, a(4)=1196683881290399744, a(5)=9269035929372191597, a(6)=52036560683837093888, a(7)=231122292121701565271, a(8)=858993459200000000000, a(9)=2775173073766990340489, a(10)=8007313507497959524352, a(11)=21048519522998348950643. - Harvey P. Dale, Oct 21 2013
Previous Showing 11-20 of 26 results. Next