cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 165 results. Next

A071645 a(n) = A051193(A072109(n))/A018804(A072109(n)).

Original entry on oeis.org

1, 3, 72, 1915, 25795, 19162, 20236, 75259, 1554957, 1491432, 17313036, 16732368, 24256243, 36578268, 44514226, 75661104, 292402908, 5482272832, 1178829937, 5302997764, 18154748952, 28439854393, 16773808684, 47254132795, 53265315697, 74423911503, 141806992844
Offset: 1

Views

Author

Vladeta Jovovic, Jun 22 2002

Keywords

Crossrefs

Extensions

More terms from Amiram Eldar, Apr 26 2023

A127626 Triangle T(n,k) = A018804(k) if k|n, else T(n,k)=0.

Original entry on oeis.org

1, 1, 3, 1, 0, 5, 1, 3, 0, 8, 1, 0, 0, 0, 9, 1, 3, 5, 0, 0, 15, 1, 0, 0, 0, 0, 0, 13, 1, 3, 0, 8, 0, 0, 0, 20, 1, 0, 5, 0, 0, 0, 0, 0, 21, 1, 3, 0, 0, 9, 0, 0, 0, 0, 27, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 1, 3, 5, 8, 0, 15, 0, 0, 0, 0, 0, 40, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25
Offset: 1

Views

Author

Gary W. Adamson, Jan 20 2007

Keywords

Comments

Inverse Mobius transform of a matrix with A018804 in the main diagonal and the rest zeros.

Examples

			First few rows of the triangle are:
1;
1, 3;
1, 0, 5;
1, 3, 0, 8;
1, 0, 0, 0, 9;
1, 3, 5, 0, 0, 15;
...
		

Crossrefs

Cf. A051731, A038040 (row sums), A018804 (diagonal).
Cf. A127093.

Programs

  • Haskell
    a127626 n k = a127626_tabl !! (n-1) !! (k-1)
    a127626_row n = a127626_tabl !! (n-1)
    a127626_tabl = map
       (map (\x -> if x == 0 then 0 else a018804 x)) a127093_tabl
    -- Reinhard Zumkeller, Jan 21 2014

A127627 Triangle T(n,k) = A054525(n,k)*A018804(k), read by rows 1<=k<=n.

Original entry on oeis.org

1, -1, 3, -1, 0, 5, 0, -3, 0, 8, -1, 0, 0, 0, 9, 1, -3, -5, 0, 0, 15, -1, 0, 0, 0, 0, 0, 13, 0, 0, 0, -8, 0, 0, 0, 20, 0, 0, -5, 0, 0, 0, 0, 0, 21, 1, -3, 0, 0, -9, 0, 0, 0, 0, 27, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 3, 0, -8, 0, -15, 0, 0, 0, 0, 0, 40
Offset: 1

Views

Author

Gary W. Adamson, Jan 20 2007

Keywords

Examples

			First few rows of the triangle are:
1;
-1, 3;
-1, 0, 5;
0, -3, 0, 8;
-1, 0, 0, 0, 9;
1, -3,-5, 0, 0, 15;
...
		

Crossrefs

Cf. A054525, A018804, A029935 (row sums).

Programs

Formula

T(n,1) = A008683(n).
T(n,n) = A018804(n).

A347095 Sum of Pillai's arithmetical function (A018804) and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 9, 0, 30, 0, 21, 25, 54, 0, 35, 0, 78, 90, 49, 0, 51, 0, 63, 130, 126, 0, 95, 81, 150, 85, 91, 0, 0, 0, 113, 210, 198, 234, 172, 0, 222, 250, 171, 0, 0, 0, 147, 153, 270, 0, 235, 169, 147, 330, 175, 0, 231, 378, 247, 370, 342, 0, 405, 0, 366, 221, 257, 450, 0, 0, 231, 450, 0, 0, 424, 0, 438, 245, 259, 546
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2021

Keywords

Comments

No negative terms in range 1 .. 2^20.
Apparently, A030059 gives the positions of all zeros.

Crossrefs

Programs

  • PARI
    up_to = 16384;
    A018804(n) = sumdiv(n, d, n*eulerphi(d)/d); \\ From A018804
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA018804(n)));
    A101035(n) = v101035[n];
    A347095(n) = (A018804(n)+A101035(n));

Formula

a(n) = A018804(n) + A101035(n).
For n > 1, a(n) = -Sum_{d|n, 1A018804(d) * A101035(n/d).
For all n >= 1, a(A030059(n)) = 0, a(A030229(n)) = 2*A018804(A030229(n)).

A349692 Dirichlet convolution of the gcd-sum function (A018804) with itself.

Original entry on oeis.org

1, 6, 10, 25, 18, 60, 26, 88, 67, 108, 42, 250, 50, 156, 180, 280, 66, 402, 74, 450, 260, 252, 90, 880, 211, 300, 372, 650, 114, 1080, 122, 832, 420, 396, 468, 1675, 146, 444, 500, 1584, 162, 1560, 170, 1050, 1206, 540, 186, 2800, 435, 1266, 660, 1250, 210, 2232, 756
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    A018804[n_] := Sum[GCD[n,k], {k, 1, n}]; a[n_] := Sum[A018804[d] A018804[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 55}]
    f[p_, e_] := (e + 1)*p^(e - 2)*((e + 2)*(e + 3)*p^2 - 2*e*(e + 2)*p + e*(e - 1))/6; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 55] (* Amiram Eldar, Nov 25 2021 *)
  • PARI
    A029935(n) = sumdiv(n, d, eulerphi(d)*eulerphi(n/d)); \\ From A029935.
    A349692(n) = sumdiv(n, d, A029935(n/d)*d*numdiv(d)); \\ Antti Karttunen, Nov 25 2021

Formula

Dirichlet g.f.: zeta(s-1)^4 / zeta(s)^2.
a(n) = Sum_{d|n} A018804(d) * A018804(n/d).
a(n) = Sum_{d|n} A029935(d) * A038040(n/d).
a(n) = Sum_{d|n} A344683(d) * A000203(n/d).
Multiplicative with a(p^e) = (e+1) * p^(e-2) * ((e+2)*(e+3)*p^2 - 2*e*(e+2)*p + e*(e-1))/6. - Amiram Eldar, Nov 25 2021

A349724 Numbers k >= 1 such that A000217(k) divided by A018804(k) is an integer.

Original entry on oeis.org

1, 2, 24, 25, 77, 153, 729, 1183, 1875, 6174, 7502, 14819, 15066, 18225, 19683, 21384, 26411, 26624, 28160, 37179, 146334, 155000, 157464, 194579, 236313, 336091, 399854, 418950, 632709, 701519, 818741, 1572864, 1605632, 2001824, 2067624, 2142075, 3670016, 3746287
Offset: 1

Views

Author

Ctibor O. Zizka, Nov 27 2021

Keywords

Examples

			k = 24: A000217(24) = 300, A018804(24) = 100, 300/100 = 3 thus 24 is a term.
		

Crossrefs

Programs

  • Mathematica
    A018804[n_]:=Apply[Times,Apply[((#1-1)#2/#1+1)#1^#2&,FactorInteger[n],{1}]]; (* After Amiram Eldar in A018804 *)
    upto=10^5;Reap[Do[If[Divisible[k(k+1)/2,A018804[k]],Sow[k]],{k,upto}]][[-1,-1]] (* Paolo Xausa, Aug 19 2022 *)
  • PARI
    isok(k) = !(k*(k+1)/2 % sumdiv(k, d, k*eulerphi(d)/d)); \\ Michel Marcus, Nov 27 2021
    
  • Python
    from itertools import islice, count
    from sympy import factorint
    from math import prod
    def A349724(): # generator of terms
        for k in count(1):
            if not k*(k+1)//2 % prod(p**(e-1)*((p-1)*e+p) for p, e in factorint(k).items()):
                yield k
    A349724_list = list(islice(A349724(),20)) # Chai Wah Wu, Nov 29 2021

Extensions

a(12)-a(20) from Paolo Xausa, Nov 27 2021
More terms from Amiram Eldar, Nov 27 2021

A349725 Numbers k >= 1 such that A018804(k) divided by A000010(k) is an integer.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 20, 32, 36, 48, 64, 100, 108, 112, 128, 132, 144, 192, 256, 320, 324, 432, 500, 512, 576, 756, 768, 784, 960, 972, 1024, 1296, 1452, 1600, 1728, 1892, 2048, 2052, 2112, 2240, 2304, 2500, 2816, 2880, 2916, 3072, 3888, 4096, 4800, 5120, 5184, 5292, 5488
Offset: 1

Views

Author

Ctibor O. Zizka, Nov 27 2021

Keywords

Examples

			A018804(20) = 72, A000010(20) = 8, 72/8 = 9 thus 20 is a term.
		

Crossrefs

Programs

  • Mathematica
    A018804[n_]:=Apply[Times,Apply[((#1-1)#2/#1+1)#1^#2&,FactorInteger[n],{1}]]; (* After Amiram Eldar in A018804 *)
    upto=10^5;Join[{1,2},Reap[Do[If[Divisible[A018804[k],EulerPhi[k]],Sow[k]],{k,4,upto,4}]][[-1,-1]]] (* Paolo Xausa, Jul 25 2022 *)
  • PARI
    isok(k) = !(sumdiv(k, d, k*eulerphi(d)/d) % eulerphi(k)); \\ Michel Marcus, Nov 27 2021

Formula

For n >= 3, a(n) mod 4 = 0. - Paolo Xausa, Jul 25 2022

A360425 Indices of records in A018804.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 72, 80, 84, 90, 105, 108, 120, 140, 144, 168, 180, 210, 240, 252, 270, 280, 288, 300, 330, 336, 360, 420, 480, 504, 540, 600, 630, 660, 720, 840, 990, 1008, 1080, 1200, 1260, 1440
Offset: 1

Views

Author

Matthew Russell Downey, Feb 08 2023

Keywords

Comments

a(n) seems to be divisible by any positive integer as n approaches infinity. Example: There seem to be 6 terms without a 2 (i.e., 1, 3, 5, 9, 15, 105), 14 terms without a 3 (as large as 280), 22 terms without a factor of 4 (as large as 6930), and 29 terms without a 5 (as large as 3276). True for a(n) < 10^8.
For any term a(n) > 1, it seems that there exists at least one term a(x) such that a(x) * prime(y) = a(n) where prime(y) <= (7/2) * A053669(a(x)). True for a(n) < 10^8.
The ratio of prime(n)/a(n) for indices {1..8, 11, 15, 17} is almost 2 (with an error of at most 1 on the numerator). The exact ratios are 2/1, 3/2, 5/3, 7/4, 11/5, 13/6, 17/8, 19/9, 31/15, 47/24, 59/30. - Matthew Russell Downey, Jul 25 2023

Examples

			A018804(36) = 168 is the largest value among the first 36 terms of A018804, so 36 is a term here; since it is the 18th value that sets a new record, a(18) = 36.
		

Crossrefs

Indices of records in A018804. Cf. A000040.

Programs

  • Mathematica
    f[p_, e_] := (e*(p - 1)/p + 1)*p^e; pil[n_] := Times @@ (f @@@ FactorInteger[n]); seq[nmax_] := Module[{p, pm = 0, s = {}}, Do[If[(p = pil[n]) > pm, pm = p; AppendTo[s, n]], {n, 1, nmax}]; s]; seq[1200] (* Amiram Eldar, Feb 13 2023 *)
  • PARI
    f(n) = sumdiv(n, d, n*eulerphi(d)/d); \\ A018804
    lista(nn) = my(r=0, list=List()); for (n=1, nn, my(m=f(n)); if (m > r, listput(list, n); r = m);); Vec(list); \\ Michel Marcus, Feb 26 2023
  • Python
    from sympy import factorint
    from math import prod
    def A018804(m): return prod(p**(e-1)*((p-1)*e+p) for p, e in factorint(m).items())
    record = 0
    for m in range(1, 2000):
      value = A018804(m)
      if value > record:
        record = value
        print(m, end=", ")
    

Formula

Conjecture: a(n) ~ exp(4*(n-1)/21). - Matthew Russell Downey, Jul 25 2023

A344456 Composite numbers k such that (k-1) divides (A018804(k)-1).

Original entry on oeis.org

41124, 230867, 358267, 37539572, 148025049, 235167249, 242788284, 1085464188, 142772845653, 202728626748
Offset: 1

Views

Author

Max Alekseyev, May 19 2021

Keywords

Comments

For any prime p, (p-1) divides (A018804(p)-1) = 2(p-1).
Some larger terms: 62763888399737.

Crossrefs

Cf. A018804.

Programs

  • Mathematica
    f[p_, e_] := (e*(p - 1)/p + 1)*p^e; pil[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[2, 400000], CompositeQ[#] && Divisible[pil[#] - 1, # - 1] &] (* Amiram Eldar, May 19 2021 *)

Extensions

a(9)-a(10) confirmed by Martin Ehrenstein, May 27 2021

A349676 Iterated Pillai's arithmetical function: a(1) = 2, for n >= 2, a(n) = A018804(a(n-1)).

Original entry on oeis.org

2, 3, 5, 9, 21, 65, 225, 1365, 14625, 223125, 5630625, 376228125, 38759765625, 3471767578125, 934835712890625, 497199051298828125, 613613372156103515625, 2538878964828409423828125, 25280374785655551910400390625, 243473923053903449878692626953125, 9202204429788304689688510894775390625
Offset: 1

Views

Author

Ctibor O. Zizka, Nov 24 2021

Keywords

Examples

			a(5) = f(f(f(f(a(1))))) = 21. Here f represents A018804.
		

Crossrefs

Cf. A018804.

Programs

  • Mathematica
    f[p_, e_] := (e*(p - 1)/p + 1) * p^e; pil[n_] := Times @@ f @@@ FactorInteger[n]; NestList[pil, 2, 20] (* Amiram Eldar, Nov 24 2021 *)
  • PARI
    f(n) = sumdiv(n, d, n*eulerphi(d)/d); \\ A018804
    lista(nn) = my(a = 2); for (n=1, nn, print1(a, ", "); a = f(a);); \\ Michel Marcus, Nov 24 2021

Formula

a(1) = 2, a(n) = A018804(a(n-1)) for n >= 2.

Extensions

More terms from Michel Marcus, Nov 24 2021
Previous Showing 21-30 of 165 results. Next